SNOW THICKNESS ON AUSTRE GRØNFJORDBREEN, SVALBARD, FROM RADAR MEASUREMENTS AND STANDARD SNOW SURVEYS


https://doi.org/10.15356/2076-6734-2018-1-5-20

Full Text:




Abstract

Summary Comparison of two methods of measurements of snow cover thickness on the glacier Austre Grønfjordbreen, Svalbard was performed in the spring of 2014. These methods were the radar (500 MHz) observations and standard snow surveys. Measurements were conducted in 77 different points on the surface of the glacier. A good correlation (R2 = 0.98) was revealed. In comparison with the data of snow surveys, the radar measurements show a similar but more detailed pattern of the distribution of the snow cover depth. The discrepancy between the depths of snow cover on maps plotted from data of both methods did not exceed 30 cm in most parts of the glacier. The standard error of interpolation of the radar data onto the entire glacier surface amounts, on average, to 18 cm. This corresponds to the error of radar measurements of 18.8% when an average snow depth is about 160 cm and 9.4% at its maximum thickness of 320 cm. The distance between the measurement points at which the spatial covariance of the snow depth disappears falls between 236 and 283 m along the glacier, and between 117 and 165 m across its position. We compared the results of radar measurements of the pulse-delay time of reflections from the base of the snow cover with the data of manual probe measurements at 10 points and direct measurements of snow depth and average density in 12 snow pits. The average speed of radio waves propagation in the snow was determined as Vcr = 23.4±0.2 cm ns−1. This magnitude and the Looyenga and Kovacs formulas allowed estimating the average density of snow cover ρL = 353.1±13.1 kg m−3 and ρK = 337.4±12.9 kg m−3. The difference from average density measured in 12 pits ρav.meas = 387.4±12.9 kg m−3 amounts to −10.8% and −14.8%. In 2014, according to snow and radar measurements, altitudinal gradient of snow accumulation on the glacier Austre Grønfjordbreen was equal to 0.21 m/100 m, which is smaller than the average values (0.35 m/100 m). According to the results of snow measurements of 2011–2014, the average thickness of the snow cover on the glacier Austre Grønfjordbreen was by 17 cm greater than in 1979. In the very snowy year 2012, it was higher by 21.5 cm in comparison with the year 1979, and its spatial variability (standard deviation σН) had increased by 25.6 cm. Estimates of spatial and temporal variability of snow cover depth will be used to analyze the hydrothermal state of the glacier and its changes with regard to revealed features and climatic trends.


About the Authors

I. I. Lavrentiev
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


S. S. Kutuzov
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


A. F. Glazovsky
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


Yu. Ya. Macheret
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


N. I. Osokin
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


A. V. Sosnovsky
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


R. А. Chernov
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


G. A. Cherniakov
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Sosnovsky A.V., Macheret Yu.Ya., Glazovsky A.F., Lavrentiev I.I. Effect of snow cover on the thermal regime of a polythermal glacier in the conditions of Western Spitsbergen. Led i Sneg. Ice and Snow. 2015, 55 (3): 27–37. doi: 10.15356/2076-6734-2015-3-27-37. [In Russian].

2. Sosnovsky A.V., Macheret Yu.Ya., Glazovsky A.F., Lavrentiev I.I. Hydrothermal structure of a polythermal glacier on Spitsbergen according to measurements and numerical simulation. Led i Sneg. Ice and Snow. 2016, 56 (2): 149–160. doi: 10.15356/2076-6734-20162-149-160. [In Russian].

3. Osokin N.I., Sosnovsky A.V. Influence of air temperature dynamics and snow cover depth on soil freezing. Kriosfera Zemli. Cryosphere of the Earth. 2015, 19 (1): 99–105. [In Russian].

4. Gokhman V.V., Khodakov V.G. Hydrology of glaciers and glacial basins. Glyatsiologiya Shpitsbergena. Glaciology of Spitsbergen. Еd.: V.M. Kotlyakov. Moscow: Nauka, 1985: 62–80. [In Russian]

5. Khodakov V.G. Snow cover. Еd.: V.M. Kotlyakov. Glyatsiologiya Shpitcbergena. Glaciology of Spitsbergen. Moscow: Nauka, 1985: 35–46. [In Russian].

6. Ahlmann H.W., Eriksson B.E., Ångström A., Rosenbaum L., Angstrom A. Scientific Results of the Swedish-Norwegian Arctic Expedition in the Summer of 1931. Part IV–VIII. Geografiska Annaler. 1933, 15: 73–216. doi: 10.2307/519460.

7. Hagen J.O., Liestøl O., Roland E., Jørgensen T. Glacier Atlas of Svalbard and Jan Mayen. Еd. A. Brekke. Oslo: Norsk polarinstitutt, 1993: 141 р.

8. Hagen J.O., Kohler J., Melvold K., Winther J.G. Glaciers in Svalbard: Mass balance, runoff and freshwater flux. Polar Research. 2003, 22 (2): 145–159. doi: 10.1111/j.1751-8369.2003.tb00104.x.

9. Vasilenko E.V., Glazovsky A.F., Lavrentiev I.I., Macheret Yu.Ya. Change in the hydrothermal structure of Austre Grønfjordbreen and Fridtjofbreen on Spitsbergen. Led i Sneg. Ice and Snow. 2014, 54 (1): 5–19. doi: 10.15356/2076-6734-2014-1-5-19. [In Russian].

10. Mikhalev V.I., Zinger E.M. Nourishment of glaciers / Еd. V.M. Kotlyakov. Oledenenie Shpitsbergena (Sval`barda). The glaciation of Spitsbergen (Svalbard). Moscow: Nauka, 1978: 106–152. [In Russian].

11. Troitsky L.S., Gus’kov A.S., Osokin N.I., Khodakov V.G. Investigations of the snow cover of Spitsbergen in the spring of 1979. Materialy glyatsiologicheskikh issledovaniy. Data of glaciological Studies. 1980, 39: 185–191. [In Russian].

12. Troitsky L.S. The mass balance of the glaciers of Spitsbergen in 1985/86, 1986/87 and 1987/88 balance years. Materialy glyatsiologicheskikh issledovaniy. Data of Glaciological Studies. 1989, 67: 194–197. [In Russian].

13. Chernov R.A., Vasilyeva T.V., Kudikov A.V. Temperature regime of the surface layer of Austre Grønfjordbreen (Western Spitsbergen). Led i Sneg. Ice and Snow. 2015, 55 (3): 38–46. doi: 10.15356/2076-6734-2015-3-38-46. [In Russian].

14. Vshivtseva T.V., Chernov R.A. Spatial distribution of the snow cover and the temperature field in the upper layer of the polythermal glacier. Led i Sneg. Ice and Snow. 2017, 57 (3): 373–380. [In Russian].

15. Study of the meteorological regime and climate change in the area of the Spitsbergen archipelago. Expedition «Spitsbergen–2011». Research report. Lead. L.M. Savatyugin. St. Petersburg: AARI, 2011. Funds of AARI, inv. № Р-6005. 202 p. [In Russian].

16. Study of the meteorological regime and climate change in the area of the Svalbard archipelago: Report on the research (final 2012). Scientific. lead. topics L.M. Savatyugin. St. Petersburg: AARI, 2012. Funds of AARI, inv. № P-6059. 235 p. [In Russian].

17. Study of the meteorological regime and climate change in the area of the Svalbard archipelago: Report on the research work (final for 2013). Scientific. lead. topics L.M. Savatyugin. St. Petersburg: AARI, 2013. Funds of AARI, inv. № P-6137. 146 p. [In Russian].

18. Eisen O., Nixdorf U., Keck L., Wagenbach D. Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body. Tellus B. 2003, 55 (5): 1007–1017.

19. Harper J.T., Bradford J.H. Snow stratigraphy over a uniform depositional surface: spatial variability and measurement tools. Cold Region Science Technology. 2003, 37 (3): 289–298. doi: 10.1016/S0165232X(03)00071-5.

20. Machguth H., Eisen O., Paul F., Hoelzle M. Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers. Geophys. Research Letters. 2006, 33 (13): L13503. doi: 10.1029/2006GL026576.

21. Brown J., Harper J., Pfeffer W.T., Humphrey N., Bradford J. High-resolution study of layering within the percolation and soaked facies of the Greenland ice sheet. Annals of Glaciology. 2011, 52 (59): 35–42.

22. Gusmeroli A., Wolken G., Arendt A. Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska. Annals of Glaciology, 2014, 55 (67): 78–88. doi: 10.3189/2014AoG67A029.

23. McGrath D., Sass L., O’Neel S., Arendt A., Wolken G., Gusmeroli A., Kienholz C., McNeil C. End-of-winter snow depth variability on glaciers in Alaska. Journ. of Geophys. Research. Earth Surface. 2015, 120 (8): 1530–1550. doi: 10.1002/2015JF003539.

24. Godio A. Georadar measurements for the snow cover density. Amer. Journ. of Applied Polymer Science. 2009, 6 (3): 414–423. doi: 10.3844/ajas.2009.414.423.

25. Godio A. Multi Population Genetic Algorithm to estimate snow properties from GPR data. Journ. of Applied Geophysics. 2016, 131: 133–144. doi: 10.1016/j.jappgeo.2016.05.015.

26. Lewis G., Osterberg E., Hawley R., Whitmore B., Marshall H.P., Box J. Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar. The Cryosphere. 2017, 11 (2): 773–788. doi: 10.5194/tc-11-773-2017.

27. Griessinger N., Mohr F., Jonas T. On measuring snow ablation rates in alpine terrain with a mobile GPR device. The Cryosphere Discussion. 2017: 1–19. https://doi.org/10.5194/tc-2016-295.

28. Forte E., Dossi M., Colucci R.R., Pipan M. A new fast methodology to estimate the density of frozen materials by means of common offset GPR data. Journ. of. Applied Geophysics. 2013, 99: 135–145. doi: 10.1016/j.jappgeo.2013.08.013.

29. Kulnitsky L.M. Gofman P.A., Tokarev M.Yu. Mathematical processing of georadar data in the RADEXPRO system. Razvedka i okhrana nedr. Exploration and protection of mineral resources. 2001, 3: 6–11. [In Russian].

30. Kotlyakov V.M., Macheret Yu.Ya., Sosnovsky A.V., Glazovsky A.F. Speed of propagation of radio waves in a dry and wet snow cover. Led i Sneg. Ice and Snow. 2017, 57 (1): 45–56. doi: 10.15356/2076-6734-2017-145-56. [In Russian].

31. Frolov A.D., Macheret Yu.Ya. On dielectric properties of dry and wet snow. Hydrol. Processes. 1999, 13 (12–13): 1755–1760. doi: 10.1002/(SICI)10991085(199909)13:12/13<1755::AID-HYP854>3.0.CO, 2-T.

32. Matzler C., Wegmuller U. Dielectric properties of freshwater ice at microwave frequencies. Journ. of Physics. D. Applied Physics. 1987, 20 (12): 1623–1630. doi: 10.1088/0022-3727/20/12/013.

33. Macheret Yu.Ya., Moskalevsky M.Yu., Vasilenko E.V. Velocity of radio waves in glaciers as an indicator of their hydrothermal state, structure and regime. Journ. of Glaciology. 1993, 39 (132): 373–384. doi: 10.1017/S0022143000016038.

34. Macheret Yu.Ya., Glazovsky A.F. Estimation of absolute water content in Spitsbergen glaciers from radar sounding data. Polar Research. 2000, 19 (2): 205–216. doi: 10.1111/j.1751-8369.2000.tb00344.x.

35. Looyenga H. Dielectric constants of heterogeneous mixtures. Physica. 1965, 31 (3): 401–406. doi: 10.1016/0031-8914(65)90045-5.

36. Kovacs A., Gow A.J., Morey R.M. A reassessment

37. Tiuri M., Sihvola A., Nyfors E., Hallikaiken M. The complex dielectric constant of snow at microwave frequencies. IEEE Journ. of Oceanic Engineering. 1984, 9 (5): 377–382. doi: 10.1109/JOE.1984.1145of the in-situ dielectric constant of polar firn. Hanover, N.H., 1993: 22 p.645.

38. Winther J.-G., Bruland O., Sand K., Killingtveit Å., Marechal D. Snow accumulation distribution on Spitsbergen, Svalbard, in 1997. Polar Research. 1998, 17 (2): 155–164. doi: 10.1111/j.1751-8369.1998.tb00269.x.

39. Grabiec M., Leszkiewicz J., Głowacki P., Jania J. Distribution of snow accumulation on some glaciers of Spitsbergen. Polish Polar Reserch. 2006, 27 (4): 309–326.


Supplementary files

For citation: Lavrentiev I.I., Kutuzov S.S., Glazovsky A.F., Macheret Y.Y., Osokin N.I., Sosnovsky A.V., Chernov R.А., Cherniakov G.A. SNOW THICKNESS ON AUSTRE GRØNFJORDBREEN, SVALBARD, FROM RADAR MEASUREMENTS AND STANDARD SNOW SURVEYS. Ice and Snow. 2018;58(1):5-20. https://doi.org/10.15356/2076-6734-2018-1-5-20

Views: 1669

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)