Possible causes of methane release from the East Arctic seas shelf


https://doi.org/10.15356/2076-6734-2014-2-69-81


Abstract

We analyze data on methane concentration in the water and lower atmosphere over the shelf of the East Siberian Arctic Seas, which were obtained using marine, terrestrial, and satellite observations. Our study is targeted towards attribution of the enhanced concentrations of methane above the latitudinal-mean, which have been detected at selected locations of these seas. We compare two hypothesis, which attribute it to the effect of modern changes of the sub aquatic permafrost, and to geological factors (tectonics, presence of fault zones and paleo river beds in the study region). Our analysis showed that the methane concentration in sea water are directly related to the distance to the nearest fault zone or paleo river bed, where permafrost is absent and bottom sediments are perforated allowing methane to escape from the deep layers containing gas hydrates. This result indicate that the enhanced emission of methane, which was observed at selected locations of the shelf, is not related to the modern climate change. Earlier study, which was based on mathematical modeling, did not find intensive development of taliks as well as other processes that lead to increased gas permeability of the bottom sediments. Taken together, these results reject the hypothesis of methane catastrophe on the East Siberian Arctic Seas shelf over the foreseeable future.


About the Authors

O. A. Anisimov
State Hydrological Institute, Sankt-Petersburg
Russian Federation


Yu. G. Zaboikina
State Hydrological Institute, Sankt-Petersburg
Russian Federation


V. A. Kokorev
State Hydrological Institute, Sankt-Petersburg
Russian Federation


L. N. Yurganov
State Maryland University, Baltimore, USA
Russian Federation


References

1. Anisimov O.A., Lavrov S.A., Reneva S.A. Emission of methane from the bog permafrost of Russia in the conditions of climate warming. Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem. Problems of ecological modeling and monitoring of ecosystems. Ed. Yu.A. Izrael’. Sankt-Petersburg: Hydrometeoizdat, 2005: 124–142. [In Russian].

2. Anisimov O.A., Lavrov S.A., Reneva S.A. Evaluation of changes of greenhouse emission from the bog permafrost of Russia in the conditions of climate warming. Sovremennye problem ecologicheskoy meteorologii i klimatologii. Modern problems of ecological meteorology and climatology. Ed. G.V. Menzhulin. Sankt-Petersburg: Hydrometeoizdat, 2005: 114–138. [In Russian].

3. Anisimov O.A., Velichko A.A., Ershova A.A., Nechaev V.P., Reneva S.A. Permafrost in North Eurasia in the past, present and future: estimates based on the syntheses of observation and modeling. Izmenenie okruzhayushchey sredy i klimata: prirodnye i cvyasannye s nimi tekhnogennye katastrofy. Changing of the environment and climate: nature and connecting technogenic catastrophes. Ed. V.M. Kotlyakov. Moscow: Institute of Geography, Russian Academy of Sciences, 2009: 134–145. [In Russian].

4. Anisimov O.A., Reneva S.A. Carbon balance in the cryolithozone of Russia and global climate: modern condition and prognosis based on modeling. Polyarnaya kriosfera i vody sushi. Polar Cryosphere and Land Water. Ed. V.M. Kotlyakov. Moscow – Sankt-Petersburg: Paulsen, 2011: 122–140. [In Russian].

5. Anisimov O.A., Anokhin A., Lavrov S.A., Malkova G.V., Pavlov A.V., Romanovskiy V.E., Streletskiy D.A., Kholodov A.L., Shiklomanov N.I. Continental multiyear permafrost. Metody izucheniya posledstviy izmeneniy klimata dlya prirodnykh system. Methods of study the sequences of climate changes for nature systems. Ed. S.M. Semenov. Moscow: VNIIGMI, 2012: 268–328. [In Russian].

6. Anisimov O.A., Borzenkova I.I., Lavrov S.A., Strel’chenko Yu.G. Modern dynamics of underwater permafrost and methane emission at the shelf of East Arctic in the context of the last and future climate changes. Led I Sneg. Ice and Snow. 2012, 2 (118): 97–105. [In Russian].

7. Anokhin V.M., Gusev E.A. Rupture tectonics of the zone of joining the oceanic and continental Earth’s crust in the Laptev Sea. [In Russian]. Vestnik TGU. Herald of the Tomsk State University. Problems of the geology and geography in Siberia. Proc. of the scientific conference. Supplement 3 (I). April 2003: 46–55.

8. Vainbergs I.G. Flooded river valleys at the shelf and connection of their formation with fluctuations of World Ocean (example of the shelf of the East-Siberian Sea and south-west part of Sea of Okhotsk. [In Russian]. Geomorfologiya i paleugeografiya shelfa. Geomorphology and paleogeography of the shelf. Materials of the XII plenum of the Geomorphologic Commission. Moscow: Nauka, 1978: 37–42.

9. Gavrilov A.V., Romanovskiy N.N., Huberten X.V. Paleogeographic scenario of the postglacial transgression at the shelf of the Laptev Sea. Kriosfera Zemli. Earth Cryosphere. 2006, 10 (1): 39–50. [In Russian].

10. Izrael’ Yu.A., Bedritskiy A.I., Frolov A.V., Blinov V.G., Gruza G.V., Semenov S.M., Anokhin A., Gitarskiy M.L., Romanovskaya A.A., Yasyukevich V.V., Boltneva L.I., Zelenov A.S., Egorov V.I., Karaban’ R.T., Kukhta A.E., Nakhutin A.I., Sedyakin V.P., Yakovlev A.F., Gershinkova D.A., Artemov E.M. Pyatoe natsionalnoe soobshchenie Rossiyskoy Federatsii. Fifth national report of the Russian Federation. Moscow: Roshydromet, 2010: 196 p. [In Russian].

11. Istomin V.A., Yakushev V.S., Makhonina N.A., Kvon B.G., Chuvilin E.M. Effect of selfconservation the gashydrates. Gazovaya promyshlennost’. Gas industry. Special issue. Gas hydrates. 2006 (3): 36–46. [In Russian].

12. Reshetnikov A.I., Ivakhov V.M. Results of permanent observation for the methane concentration at the Tiksi observatory (comparison with data of ship’s observations at the shelf of Laptev Sea). Trudy GGO. Proc. of the Main Geophysical observatory. Ed. V.M. Katsov, V.P. Meleshko. Sankt-Petersburg: Hydrometeoizdat, 2012: 257–269. [In Russian].

13. Reshetnikov A.I., Makshtas A.P. Arctic Hydrometeorological Observatory “Tiksi”. Trudy GGO. Proc. of the Main Geophysical observatory. Ed. V.M. Katsov, V.P. Meleshko. Sankt-Petersburg: Hydrometeoizdat, 2012: 267–283. [In Russian].

14. Sergienko V.I., Dudarev O.V., Dmitrievskiy N.N., Shakhova N.E., Nikol’skyi N.N., Nikiforov S.L., Salomatin A.S., Salyuk R.A., Karnaukh V.V., Chernykh D.B., Tumskoy V.E., Chuvilin E.M., Bukhanov B.A. Degradation of submarine permafrost and a destruction of hydrates at the shelf of the Eastern Arctic seas as a possible cause of “methane catastrophe”: some results of the 2011 observations. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2012, 445 (3): 330–335. [In Russian].

15. Shakhova N.E., Alekseev V.A., Semilenov I.P. Predicted methane emission at the East-Siberian shelf. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2010, 430 (4): 533–536. [In Russian].

16. Ahmed N. Seven facts you need to know about the Arctic methane timebomb. The Guardian. 2013. 5 August.

17. Anisimov O. Potential feedback of thawing permafrost to the global climate system through methane emission. Environmental Research Letters. 2007; 2. doi:10.1088/1748-9326/2/4/045016.

18. Anisimov O.A., Reneva S.A. Permafrost and changing climate: the Russian perspective. Ambio. 2006, 35 (4): 169–175.

19. Conley H.M., Toland T., Kraut J., Osthagen A. A new security architecture for the Arctic. An American perspective. Washington DC: Center for strategic and international studies, 2012: 112 p.

20. Darby D.A. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas – a review. Progress in Oceanography. 2006, 71: 129–144.

21. Delisle G. Temporal variability of subsea permafrost and gas hydrate occurrences as function of climate change in the Laptev Sea, Siberia. Polarforschung. 2000, 68: 221–225.

22. Dmitrenko I.A., Kirillov S.A., Tremblay B., Kassens H., Anisimov O.A., Lavrov S.A., Razumov S.O., Grigoriev M.N. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. Journ. of Geophys. Research. 2011, 116: C10027. doi:10.1029/2011JC007218.

23. Eliseev A.V., Denisov S.N., Arzhanov M.M., Mokhov I.I. Climate-methane cycle feedback in global climate model simulations forced by RCP scenarios. Geophys. Research Abstracts. EGU General Assembly, 2013.

24. Holmes M.L., Creager Y.S. Holocene history of the Laptev Sea Continental Shelf. Marine Geology and Oceanography of the Arctic Seas. 1974, 3: 211–229.

25. Hugelius G., Tarnocai C., Broll G., Canadell J.G., Kuhry P., Swanson D.K. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data Discussions. 2012, 5: 707–733.

26. Kennett J.P., Cannariato K.G., Hendy I.L., Behl R.J. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science. 2000, 288: 128–133.

27. Kuhry P., Ping C., Schuur E.A.G., Tarnocai C., Zimov S.A. Report from the International Permafrost Association: carbon pools in permafrost regions. Permafrost and Periglacial Processes. 2009, 20 (2): 229–234.

28. Nikolsky D., Shakhova N. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait. Environmental Research Letters. 2010, 5: doi:10.1088/1748-9326/5/1/015006.

29. Nikolsky D.J., Romanovsky V.E., Romanovskii N.N., Kholodov A.L., Shakhova N.E., Semiletov I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region. Journ. of Geophys. Research. 2012, 117: F03028. doi:10.1029/2012JF002358.

30. Oechel W.C., Hastings S.J., Vourlitis G., Jenkins M., Richers G., Gruike N. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature. 1993, 361: 520–523.

31. Olefeld D., Turetsky M.R., Crill P.M., McGuire A.D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zone. Global Change Biology. 2013; 19: 589–603.

32. Petrenko V.V., Etheridge D.M., Weiss R.F., Brook E.J., Schaefer H., Severinghaus J.P., Smith A.M., Lowe D., Hua Q., Riedel K. Methane from the East Siberian Arctic Shelf. Science. 2010, 329: 1146–1147.

33. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-mar. Letters. 2005, 25: 167–182.

34. Ruppel C.D. Methane hydrates and contemporary climate change. Nature Education Knowledge. 2011, 3 (10): 1–10.

35. Schuur E.A.G., Bockheim J., Canadell J.G., Euskirchen E., Field C.B., Goryachkin S.V., Hagemann S., Kuhry P., Lafleur P.M., Lee H., Mazhitova G., Nelson F.E., Rinke A., Romanovsky V.E., Shiklomanov N., Tarnocai C., Venevsky S., Vogel J.G., Zimov S.A. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience. 2008, 58 (8): 701–714.

36. Semiletov I.P., Shakhova N.E., Sergienko V.I., Pipko I.I., Dudarev O.V. On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system. Environmental Research Letters. 2012, 7: 1–13.

37. Shakhova N., Semiletov I., Leifer I., Rekant P., Salyuk A., Kosmach D. Geochemical and geophysical evidence of methane release from the inner East Siberian Shelf. Journ. of Geophys. Research. 2013; 115. Doi: 10.1029/2009JC005602.

38. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernykh D., Stubbs C., Nikolsky D., Tumskoy V., Gustafsson O. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience. November 2013, 24: 1–7.

39. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science. 2010, 327: 1246–1250.

40. Stein R. Arctic Paleo-River Discharge (APARD) – A new research programme of the Arctic Ocean Sciences Board (AOSB). Reports on Polar Research. Alfred Wegener Institute for Polar and Marine Research. Bremerhaven, 1998: 127 p.

41. Tarnocai C., Canadell J.G., Schuur E.A.G., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles. 2009, 23: GB2023. doi:10.1029/2008GB003327.

42. Xiong X., Barnet C.D., Maddy E.S., Gambacorta A., King T.S., Wofsy S.C. Mid-upper tropospheric methane retrieval from IASI and its validation. Atmospheric Measurement Techniques. 2014, 6: 2501–2531.

43. Xiong X., Barnet C.D., Zhuang Q., Machida T., Sweeney C., Patra P.K. Mid-upper tropospheric methane in the high Northern Hemisphere: Spaceborne observations by AIRS, aircraft measurements, and model simulations. Journ. of Geophys. Research. 2010, 115. doi:10.1029/2009JD013796.


Supplementary files

For citation: Anisimov O.A., Zaboikina Y.G., Kokorev V.A., Yurganov L.N. Possible causes of methane release from the East Arctic seas shelf. Ice and Snow. 2014;54(2):69-81. https://doi.org/10.15356/2076-6734-2014-2-69-81

Views: 6727

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)