Возможные причины эмиссии метана на шельфе морей Восточной Арктики


https://doi.org/10.15356/2076-6734-2014-2-69-81

Аннотация

Анализируются данные различных измерений (морских экспедиционных, стационарных на станции Тикси, спутниковых) концентраций метана в воде и в нижней атмосфере на шельфе морей Восточной Арктики. Рассматриваются возможные причины повышенных по сравнению со среднеширотными значениями концентраций метана, установленных на некоторых участках шельфа этих морей. Сравниваются две альтернативные гипотезы этого: современные изменения субаквальной мерзлоты и геологические причины (тектоника, наличие разломов и русел палеорек на рассматриваемой территории). Показано, что концентрации метана в морской воде зависят от расстояния до ближайшего разлома или палеорусла, где отсутствуют мёрзлые донные отложения и имеются пути для выхода метана из глубоких гидратосодержащих слоёв. Таким образом, на отдельных участках шельфа повышенная эмиссия метана не связана с современным изменением климата. Выполненные ранее модельные расчёты показали, что на шельфе не происходит интенсивного образования сквозных таликов и иных процессов, увеличивающих газовую проницаемость донных отложений. Эти результаты опровергают гипотезу о возможности в обозримом будущем «метановой катастрофы» на шельфе морей Восточной Арктики.


Об авторах

О. А. Анисимов
Государственный гидрологический институт, Санкт Петербург;
Россия


Ю. Г. Забойкина
Государственный гидрологический институт, Санкт Петербург;
Россия


В. А. Кокорев
Государственный гидрологический институт, Санкт Петербург;
Россия


Л. Н. Юрганов
Университет штата Мэриленд в Балтиморе, США
Россия


Список литературы

1. Anisimov O.A., Lavrov S.A., Reneva S.A. Emission of methane from the bog permafrost of Russia in the conditions of climate warming. Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem. Problems of ecological modeling and monitoring of ecosystems. Ed. Yu.A. Izrael’. Sankt-Petersburg: Hydrometeoizdat, 2005: 124–142. [In Russian].

2. Anisimov O.A., Lavrov S.A., Reneva S.A. Evaluation of changes of greenhouse emission from the bog permafrost of Russia in the conditions of climate warming. Sovremennye problem ecologicheskoy meteorologii i klimatologii. Modern problems of ecological meteorology and climatology. Ed. G.V. Menzhulin. Sankt-Petersburg: Hydrometeoizdat, 2005: 114–138. [In Russian].

3. Anisimov O.A., Velichko A.A., Ershova A.A., Nechaev V.P., Reneva S.A. Permafrost in North Eurasia in the past, present and future: estimates based on the syntheses of observation and modeling. Izmenenie okruzhayushchey sredy i klimata: prirodnye i cvyasannye s nimi tekhnogennye katastrofy. Changing of the environment and climate: nature and connecting technogenic catastrophes. Ed. V.M. Kotlyakov. Moscow: Institute of Geography, Russian Academy of Sciences, 2009: 134–145. [In Russian].

4. Anisimov O.A., Reneva S.A. Carbon balance in the cryolithozone of Russia and global climate: modern condition and prognosis based on modeling. Polyarnaya kriosfera i vody sushi. Polar Cryosphere and Land Water. Ed. V.M. Kotlyakov. Moscow – Sankt-Petersburg: Paulsen, 2011: 122–140. [In Russian].

5. Anisimov O.A., Anokhin A., Lavrov S.A., Malkova G.V., Pavlov A.V., Romanovskiy V.E., Streletskiy D.A., Kholodov A.L., Shiklomanov N.I. Continental multiyear permafrost. Metody izucheniya posledstviy izmeneniy klimata dlya prirodnykh system. Methods of study the sequences of climate changes for nature systems. Ed. S.M. Semenov. Moscow: VNIIGMI, 2012: 268–328. [In Russian].

6. Anisimov O.A., Borzenkova I.I., Lavrov S.A., Strel’chenko Yu.G. Modern dynamics of underwater permafrost and methane emission at the shelf of East Arctic in the context of the last and future climate changes. Led I Sneg. Ice and Snow. 2012, 2 (118): 97–105. [In Russian].

7. Anokhin V.M., Gusev E.A. Rupture tectonics of the zone of joining the oceanic and continental Earth’s crust in the Laptev Sea. [In Russian]. Vestnik TGU. Herald of the Tomsk State University. Problems of the geology and geography in Siberia. Proc. of the scientific conference. Supplement 3 (I). April 2003: 46–55.

8. Vainbergs I.G. Flooded river valleys at the shelf and connection of their formation with fluctuations of World Ocean (example of the shelf of the East-Siberian Sea and south-west part of Sea of Okhotsk. [In Russian]. Geomorfologiya i paleugeografiya shelfa. Geomorphology and paleogeography of the shelf. Materials of the XII plenum of the Geomorphologic Commission. Moscow: Nauka, 1978: 37–42.

9. Gavrilov A.V., Romanovskiy N.N., Huberten X.V. Paleogeographic scenario of the postglacial transgression at the shelf of the Laptev Sea. Kriosfera Zemli. Earth Cryosphere. 2006, 10 (1): 39–50. [In Russian].

10. Izrael’ Yu.A., Bedritskiy A.I., Frolov A.V., Blinov V.G., Gruza G.V., Semenov S.M., Anokhin A., Gitarskiy M.L., Romanovskaya A.A., Yasyukevich V.V., Boltneva L.I., Zelenov A.S., Egorov V.I., Karaban’ R.T., Kukhta A.E., Nakhutin A.I., Sedyakin V.P., Yakovlev A.F., Gershinkova D.A., Artemov E.M. Pyatoe natsionalnoe soobshchenie Rossiyskoy Federatsii. Fifth national report of the Russian Federation. Moscow: Roshydromet, 2010: 196 p. [In Russian].

11. Istomin V.A., Yakushev V.S., Makhonina N.A., Kvon B.G., Chuvilin E.M. Effect of selfconservation the gashydrates. Gazovaya promyshlennost’. Gas industry. Special issue. Gas hydrates. 2006 (3): 36–46. [In Russian].

12. Reshetnikov A.I., Ivakhov V.M. Results of permanent observation for the methane concentration at the Tiksi observatory (comparison with data of ship’s observations at the shelf of Laptev Sea). Trudy GGO. Proc. of the Main Geophysical observatory. Ed. V.M. Katsov, V.P. Meleshko. Sankt-Petersburg: Hydrometeoizdat, 2012: 257–269. [In Russian].

13. Reshetnikov A.I., Makshtas A.P. Arctic Hydrometeorological Observatory “Tiksi”. Trudy GGO. Proc. of the Main Geophysical observatory. Ed. V.M. Katsov, V.P. Meleshko. Sankt-Petersburg: Hydrometeoizdat, 2012: 267–283. [In Russian].

14. Sergienko V.I., Dudarev O.V., Dmitrievskiy N.N., Shakhova N.E., Nikol’skyi N.N., Nikiforov S.L., Salomatin A.S., Salyuk R.A., Karnaukh V.V., Chernykh D.B., Tumskoy V.E., Chuvilin E.M., Bukhanov B.A. Degradation of submarine permafrost and a destruction of hydrates at the shelf of the Eastern Arctic seas as a possible cause of “methane catastrophe”: some results of the 2011 observations. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2012, 445 (3): 330–335. [In Russian].

15. Shakhova N.E., Alekseev V.A., Semilenov I.P. Predicted methane emission at the East-Siberian shelf. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2010, 430 (4): 533–536. [In Russian].

16. Ahmed N. Seven facts you need to know about the Arctic methane timebomb. The Guardian. 2013. 5 August.

17. Anisimov O. Potential feedback of thawing permafrost to the global climate system through methane emission. Environmental Research Letters. 2007; 2. doi:10.1088/1748-9326/2/4/045016.

18. Anisimov O.A., Reneva S.A. Permafrost and changing climate: the Russian perspective. Ambio. 2006, 35 (4): 169–175.

19. Conley H.M., Toland T., Kraut J., Osthagen A. A new security architecture for the Arctic. An American perspective. Washington DC: Center for strategic and international studies, 2012: 112 p.

20. Darby D.A. Past glacial and interglacial conditions in the Arctic Ocean and marginal seas – a review. Progress in Oceanography. 2006, 71: 129–144.

21. Delisle G. Temporal variability of subsea permafrost and gas hydrate occurrences as function of climate change in the Laptev Sea, Siberia. Polarforschung. 2000, 68: 221–225.

22. Dmitrenko I.A., Kirillov S.A., Tremblay B., Kassens H., Anisimov O.A., Lavrov S.A., Razumov S.O., Grigoriev M.N. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. Journ. of Geophys. Research. 2011, 116: C10027. doi:10.1029/2011JC007218.

23. Eliseev A.V., Denisov S.N., Arzhanov M.M., Mokhov I.I. Climate-methane cycle feedback in global climate model simulations forced by RCP scenarios. Geophys. Research Abstracts. EGU General Assembly, 2013.

24. Holmes M.L., Creager Y.S. Holocene history of the Laptev Sea Continental Shelf. Marine Geology and Oceanography of the Arctic Seas. 1974, 3: 211–229.

25. Hugelius G., Tarnocai C., Broll G., Canadell J.G., Kuhry P., Swanson D.K. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data Discussions. 2012, 5: 707–733.

26. Kennett J.P., Cannariato K.G., Hendy I.L., Behl R.J. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science. 2000, 288: 128–133.

27. Kuhry P., Ping C., Schuur E.A.G., Tarnocai C., Zimov S.A. Report from the International Permafrost Association: carbon pools in permafrost regions. Permafrost and Periglacial Processes. 2009, 20 (2): 229–234.

28. Nikolsky D., Shakhova N. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait. Environmental Research Letters. 2010, 5: doi:10.1088/1748-9326/5/1/015006.

29. Nikolsky D.J., Romanovsky V.E., Romanovskii N.N., Kholodov A.L., Shakhova N.E., Semiletov I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region. Journ. of Geophys. Research. 2012, 117: F03028. doi:10.1029/2012JF002358.

30. Oechel W.C., Hastings S.J., Vourlitis G., Jenkins M., Richers G., Gruike N. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature. 1993, 361: 520–523.

31. Olefeld D., Turetsky M.R., Crill P.M., McGuire A.D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zone. Global Change Biology. 2013; 19: 589–603.

32. Petrenko V.V., Etheridge D.M., Weiss R.F., Brook E.J., Schaefer H., Severinghaus J.P., Smith A.M., Lowe D., Hua Q., Riedel K. Methane from the East Siberian Arctic Shelf. Science. 2010, 329: 1146–1147.

33. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-mar. Letters. 2005, 25: 167–182.

34. Ruppel C.D. Methane hydrates and contemporary climate change. Nature Education Knowledge. 2011, 3 (10): 1–10.

35. Schuur E.A.G., Bockheim J., Canadell J.G., Euskirchen E., Field C.B., Goryachkin S.V., Hagemann S., Kuhry P., Lafleur P.M., Lee H., Mazhitova G., Nelson F.E., Rinke A., Romanovsky V.E., Shiklomanov N., Tarnocai C., Venevsky S., Vogel J.G., Zimov S.A. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience. 2008, 58 (8): 701–714.

36. Semiletov I.P., Shakhova N.E., Sergienko V.I., Pipko I.I., Dudarev O.V. On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system. Environmental Research Letters. 2012, 7: 1–13.

37. Shakhova N., Semiletov I., Leifer I., Rekant P., Salyuk A., Kosmach D. Geochemical and geophysical evidence of methane release from the inner East Siberian Shelf. Journ. of Geophys. Research. 2013; 115. Doi: 10.1029/2009JC005602.

38. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernykh D., Stubbs C., Nikolsky D., Tumskoy V., Gustafsson O. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience. November 2013, 24: 1–7.

39. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science. 2010, 327: 1246–1250.

40. Stein R. Arctic Paleo-River Discharge (APARD) – A new research programme of the Arctic Ocean Sciences Board (AOSB). Reports on Polar Research. Alfred Wegener Institute for Polar and Marine Research. Bremerhaven, 1998: 127 p.

41. Tarnocai C., Canadell J.G., Schuur E.A.G., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles. 2009, 23: GB2023. doi:10.1029/2008GB003327.

42. Xiong X., Barnet C.D., Maddy E.S., Gambacorta A., King T.S., Wofsy S.C. Mid-upper tropospheric methane retrieval from IASI and its validation. Atmospheric Measurement Techniques. 2014, 6: 2501–2531.

43. Xiong X., Barnet C.D., Zhuang Q., Machida T., Sweeney C., Patra P.K. Mid-upper tropospheric methane in the high Northern Hemisphere: Spaceborne observations by AIRS, aircraft measurements, and model simulations. Journ. of Geophys. Research. 2010, 115. doi:10.1029/2009JD013796.


Дополнительные файлы

Для цитирования: Анисимов О.А., Забойкина Ю.Г., Кокорев В.А., Юрганов Л.Н. Возможные причины эмиссии метана на шельфе морей Восточной Арктики. Лёд и Снег. 2014;54(2):69-81. https://doi.org/10.15356/2076-6734-2014-2-69-81

For citation: Anisimov O.A., Zaboikina Y.G., Kokorev V.A., Yurganov L.N. Possible causes of methane release from the East Arctic seas shelf. Ice and Snow. 2014;54(2):69-81. https://doi.org/10.15356/2076-6734-2014-2-69-81

Просмотров: 740

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)