Isotopic composition of snow and ice on the glaciers of Novaya Zemlya


https://doi.org/10.15356/2076-6734-2017-3-293-306

Full Text:




Abstract

In 2015–2016 during the research expeditions of Institute of Oceanology, Russian Academy of Sciences the study of stable water isotopes (18O and D) was conducted on glaciers of Novaya Zemlya. As a result, first data on isotopic composition of seasonal snow cover and glacial ice of different ages were obtained and its connection to recent climate change has been shown. The first studies of the isotopic composition of snow cover and glacial ice at Novaya Zemlya allowed determine the average values and the range of variability of δ18O and δD. It shown that for the Northern ice cap glacial ice δ18O vary within −13.91 ÷ −15.83 ‰ with an average value of −14.93 ‰ and −103,95 ÷ −116.75 ‰ for δD at −109.88 ‰ mean value. The maximum variations were recorded for summer snow samples (−8.35 ‰ for δ18O and −55.79 ‰ for δD), as well as for the horizon of superimposed ice (−20.67 ‰ for δ18O and −151.48 ‰ for δD) where isotopic composition has been inherited from winter precipitation. Insignificant differences in the coefficients of the meteoric water regression equation for precipitation on GNIP stations and glacial ice at Novaya Zemlya indicate similar conditions of air masses and precipitation formation both at GNIP station and on glaciers. Deuterium excess showed no seasonal fluctuations, and its values did not exceed 15 ‰, which shows that the proportion of continental precipitation of moisture is very low. Analysis of isotopic profiles obtained on the glaciers of Novaya Zemlya indicated the presence of significant melting. This applies not only to the modern shallow horizons, but also to the part of the glacial strata that formed in the highest part of the archipelago close to ice divide and came to the surface at the Serp i Molot Glacier tongue. Therefore, in terms of ice core palaeogeographic reconstructions the most interesting site is the highest part of the Northern ice cap where it is possible to assume the existence of colder horizons formed during the Little Ice Age and where the seasonal geochemical signal may be preserved.

About the Authors

V. N. Mikhalenko
Institute of Geography, Russian Academy of Sciences.
Russian Federation
Moscow.


S. S. Kutuzov
Institute of Geography, Russian Academy of Sciences.
Russian Federation
Moscow.


A. A. Ekaykin
Arctic and Antarctic Research Institute.
Russian Federation
St . Petersburg.


A. A. Lavrantiev
Institute of Geography, Russian Academy of Sciences.
Russian Federation
Moscow.


A. V. Kozachek
Arctic and Antarctic Research Institute.
Russian Federation
St . Petersburg.


R. A. Chernov
Institute of Geography, Russian Academy of Sciences.
Russian Federation
Moscow.


References

1. YYoshimura K., Miyoshi T., Kanamitsu M. Observa- tion system simulation experiments using water vapor isotope information . Journ . of Geophys . Research . Atmosphere . 2014, 119: 7842–7862 . doi: 10.1002/2014JD021662.

2. Gryazin V., Risi C., Jouzel J., Kurita N., Worden J., Frankenberg C., Bastikov V., Gribanov K., Stukova O. To what extent could water isotopic measurements help us understand model biases in the water cycle over West- ern Siberia . Atmospheric Chemistry and Physics . 2014, 14: 9807–9830 . doi: 10.5194/acp-14-9807-2014.

3. Ekaykin A.A. Stabil’nye izotopy vody v glyatsiologii i paleogeografii. Stable water isotopes in glaciology and paleoge- ography . St . Petersburg, AARI, 2016 . 63 p . [In Russian].

4. Dansgaard W., Johnsen S.J., Møller J., Langway C.C. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet . Science . 1969, 166 (3903): 377–380.

5. Masson-Delmotte V., Dreyfus G., Braconnot P., Johnsen S., Jouzel J., Kageyama M., Landias A., Loutre M.-F., Nouet J., Parrenin F., Raynaud D., Stenni B., Tuenter E . Past temperature reconstructions from deep ice cores: relevance for future climate change . Climate of the Past . 2006, 2: 145–165 . doi: 10.5194/cp-2-145-2006.

6. Ekaykin A.A., Lipenkov V.Ya . Formation of the ice core isotopic composition . Physics of Ice Core Records II . Ed . by T . Hondoh . Low Temperature Science Suppl . Issue . 2009, 68: 299–314.

7. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html

8. Brezgunov V.S., Esikov A.D., Ferronsky V.I., Salnova L.V. Spatial and temporal variations of the oxygen isotopic composition of precipitation and river waters in the northern part of Eurasia and their relationship with temperature . Vodnye resursy. Water Resources . 1998, 25 (1): 73–84 . [In Russian].

9. Ferronsky V.I., Polyakov V.A. Izotopiya gidrosfery Zemli. Isotopes of the Earth hydrosphere . Moscow: Nauchniy Mir, 2009: 632 p . [In Russian].

10. Malygina N.S., Eirikh A.N., Kurepina N.Yu., Papina T.S . Isotopic composition of winter precipitation and snow cover in the transition zone of the Altai . Led i Sneg . Ice and Snow . 2017, 57 (1): 57–68 . doi: 10.15356/2076-6734-2017-1-57-68 . [In Russian].

11. Steen-Larsen H.C., Johnsen S.J., Masson-Delmotte V., Stenni B., Risi C., Sodemann H., Baslev-Clausen D., Blunier T., Dahl-Jensen D., Ellehøj M.D., Falourd S., Grindsted A., Gkinis V., Jouzel J., Popp T., Sheldon S., Simonsen S.B., Sjolte J., Steffensen J.P., Sperilich P., Svenbjönsdóttir A.E., Vinther B.M., White J.W.C. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet . Atmospheric Chemistry and Physics . 2013, 13: 4815– 4828 . doi: 10.5194/acp-13-4815-2013.

12. Nikolaev V.I., Osokin N.I., Zazovskaya E.P. Formation of the isotopic composition of snow on the glaciers of the Arctic (for example, Spitsbergen and the North of the Earth) . Led i Sneg. Ice and Snow . 2014, 54 (1): 61–65 . doi: 10.15356/2076-6734-2014-1-61-65 . [In Russian].

13. Kobashi T., Kawamura K., Severinghaus J.P., Barnola J.M., Nakaegawa T., Vinther B.M., Johnsen S.J., Box J.E. High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core . Geophys . Research Letters . 2011, 38 (21) . doi: 10.1029/2011GL049444.

14. NEEM community members . Eemian interglacial re- constructed from a Greenland folded ice core . Nature . 2013, 493 (7433): 489–494 . doi: 10.1038/nature11789 .

15. Isaksson E., Kohler J., Pohjola V., Moore J., Igarashi M., Karlöf L., Martma T., Harro Meijer, Motoyama H., Vaikmäe R., van de Wal R.S. Two ice-core δ18O records from Svalbard illustrating climate and sea-ice variability over the last 400 years . The Holocene . 2005, 15 (4): 501–509 . doi: 10.1191/0959683605hl820rp.

16. Stiévenard M., Nikolaev V., Bol’shiyanov D.Yu., Fléhoc C., Jouzel J., Klementyev O.L., Souchez R. Pleistocene ice at the bottom of the Vavilov Ice Cap, Severnaya Zemlya, Russian Arctic . Journ . of Glaciology . 1996, 42 (142): 403–406.

17. Opel T., Frietzsche D., Meyer H., Schüett R., Weiler K., Ruth U., Wilhelms F., Fischer H. 115 year ice-core data from Akademii Nauk ice cap, Severnaya Zemlya: highresolution record of Eurasian Arctic climate change . Journ . of Glaciology . 2009, 55 (189): 21–31 . doi: 10.3189/002214309788609029.

18. Henderson K.A. An ice core paleoclimate study of Windy Dome, Franz Josef Land (Russia): develop- ment of a recent climate history for the Barents Sea . Dissertation for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University . The Ohio State University . 2002: 217 p.

19. Kotlyakov V.M., Arkhipov S.M., Henderson K.A., Nagornov O.V. Deep drilling of glaciers in Eurasian Arctic as a source of paleoclimatic records // Quaternary Science Reviews . 2004, 23: 1371–1390 . doi: 10.1016/j.quasirev.2003.12.013.

20. Leibman M.O., Arkhipov S.M., Perednya D.D., Savvichev A.S., Vanstein B.G., Hubberten H.-W. Geochemical properties of the water–snow–ice complexes in the area of Shokalsky glacier, Novaya Zemlya, in relation to tabular groundice formation . Annals of Glaciology . 2005, 42: 249–254 . doi: 10.3189/172756405781812952.

21. Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., Hagen J.-O., Hock R., Kaser G., Keinholtz C., Miles E.S., Moholdt G., Mölg N., Paul F., Radic V., Rastner P., Raup B.H., Rich J., Sharp M.J. The Randolph consortium . The Randolph Glacier Inventory: a globally complete inventory of glaciers . Journ . of Glaciology . 2014, 60 (221): 537–552 . doi: 10.3189/2014JoG13J176.

22. Ermolaev M.M. Works of Novaya Zemlya glaciological station in Russkaya Gavan . Byulleten’ Arkticheskogo instituta. Arctic Institute Bulletin. 1934, 1: 50–55 . [In Russian].

23. Ermolaev M.M. Glaciological excursion to the Sho- kalski Glacier in Russkaya Gavan . In: Novaya Zemlya excursions, 2 . Intern . Geological Congress, 17th session . Moscow: Glavsevmorput Publishing House, 1937 . 160 p . [In Russian].

24. Chizhov O.P., Koryakin V.S., Davidovich N.V., Kanevsky Z.M., Zinger E.M., Bazheva V.Ya., Bazhev A.B., Khmelevskoy I.F. Oledenenie Novoy Zemli. Glaciation of Novaya Zemlya . Moscow: Nauka, 1968: 338 p . [In Russian]. 2

25. Lavrentiev I.I. Changes of Novaya Zemlya glaciers in 1952–2015 . Abstracts of the XVI Glaciological Sym- posium, St . Peretsburg, 24–27 May 2016 . 2016: 116 . [In Russian].

26. Katalog lednikov SSSR. USSR Glacier Inventory . V . 3 . Pt . 2 . Leningrad: Hydrometeoizdat, 1978: 112 p.

27. Pfirman S.L., Bauch D., Gammelsrød T. The Northern Barents Sea: Water Mass Distribution and Modification . In: The polar oceans and their role in shaping the global environment . Eds . O .M . Johannessen, R .D . Muench and J .E . Overland . American Geophysical Union, Geophysical Monograph 85, Washington D .C . 1994 . doi: 10.1029/GM085p0077.

28. Walsh J.E. Climate of the Arctic marine environ- ment . Ecological applications . 2008, 18 (2): 3–22 . doi: 10.1890/06-0503.1.

29. Obzor gidrometeorologicheskikh protsessov v Severnom Ledovitom okeane. Overview of hydrometeorological processes in the Arctic Ocean, 2014 . Ed . by I .E . Frolov . Sankt Petersburg, AARI, 2015: 116 p . [In Russian].

30. Polyakov I.V., Bekryaev R.V., Alekseev G.V., Bhatt U.S., Colony R.L., Johnson M.A., Makshtas A.P., Walsh D. Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000 . Journ . of Climate . 2003, 16: 2067–2077 . doi: 10.1175/1520-0442(2003)016.

31. Radionov V.F., Aleksandrov Ye.I., Svyashchennikov P.N., Fetterer F . Daily precipitation sums at coastal and island Russian Arctic stations, 1940–1990 . Boulder, CO: National Snow and Ice Data Center . 2004 . doi: 10.7265/N5JS9NCS.

32. Zeeberg J., Forman S.L. Changes in glacier extent on north Novaya Zemlya in the twentieth century . The Holocene . 2001, 11 (2): 161–175 . doi: 10.1191/095968301676173261.

33. Chernov R.A., Kudikov A.B., Miroshnikov A.Yu. First results of the glaciological research of the Northern Ice Cap in Novaya Zemlya . Uspekhi sovremennogo estestvoznaniya. The success of modern natural science . 2016, 11: 197– 201 . [In Russian].

34. Craig H. Isotopic variations in meteoric waters . Science . 1961, 133: 1702–1703 . doi: 10.1126/science .133 .3465 .1702.

35. Aemisegger F., Pfahl S., Sodemann H., Lehner I., Seneviratne S.I., Wernli H. Deuterium excess as a proxy for continental moisture recycling and plant transpiration . Atmospheric Chemistry and Physics . 2014, 14: 4029– 4054 . doi: 10.5194/acp-14-4029-2014.


Supplementary files

For citation: Mikhalenko V.N., Kutuzov S.S., Ekaykin A.A., Lavrantiev A.A., Kozachek A.V., Chernov R.A. Isotopic composition of snow and ice on the glaciers of Novaya Zemlya. Ice and Snow. 2017;57(3):293-306. https://doi.org/10.15356/2076-6734-2017-3-293-306

Views: 1434

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)