Dynamics of the ice mass in Antarctica in the time of warming


https://doi.org/10.15356/2076-6734-2017-2-149-169

Full Text:




Abstract

The modern age of global warming affect the general state of the Antarctic ice sheet and its mass balance. Studies of the Southern polar region of the Earth during the International Geophysical Year  (1957–1958) called the assumption of growth in the modern ice mass in East Antarctica. However, with the development of new methods, this conclusion has been questioned. At the turn of the century the study of global processes Earth started to use the satellite radar or laser altimetry and satellite gravimetry, which allows determining change of different masses on the Earth, including ice bodies. From the beginning of the XXI century, these methods have been used to calculate the continental ice balance. In our study, we analyze different data of recent years, supporting the earlier conclusion on continued growth of the ice mass in East Antarctica. How‑ ever, in West Antarctica and the Antarctic Peninsula, on the contrary, there is increased loss of ice, leveling the increased income of ice mass of in the Central Antarctica. So all in all in the modern era of global warm‑ ing, the ice mass in Antarctica appears to be decreasing despite some growth of the East Antarctic ice sheet. Fluctuations of land ice mass reflect in the sea level variations, but in comparison with the scale of the Ant‑ arctic ice sheet its contribution to sea‑level rise is not so significant. The main reason for this is that the mass accumulation in East Antarctica with significant probability prevails over the ice outflow.

About the Authors

V. M. Kotlyakov
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


A. F. Glazovsky
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


M. Yu. Moskalevsky
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Mellor M. Mass balance studies in Antarctica. Journ. of Glaciology. 1959. V. 3. № 26. P. 522–533.

2. Lister H. The climate and Ice mass balance. Geophysical investigations of the Commonwealth Trans-Antarctic Expedition. Geographical Journal. 1959. V. 125. № 3–4. P. 343–351.

3. Kotlyakov V.M. Intensity of nourishment of the Antarctic ice sheet. Data of Glaciological Studies. 1961, 1: 53–58. [In Russian].

4. Kotlyakov V.M. On the presentday increase of the Antarctic ice sheet mass. Data of Glaciological Studies. 1962, 5: 39–44. [In Russian].

5. Kotlyakov V.M. The snow cover of the Antarctic and its role in the presentday glaciation of the continent. Jerusalem, 1966. 256 p. Translation from Russian.

6. Fretwell P., Pritchard H.D., Vaughan D.G., Bamber J.L., Barrand N.E, Bell R., Bianchi C., Bingham R.G., Blankenship D.D., Casassa G., Catania G., Callens D., Conway H., Cook A.J., Corr H.F.J., Damaske D., Damm V., Ferraccioli F., Forsberg R., Fujita S., Gim Y., Gogineni P., Griggs J.A., Hindmarsh R.C.A., Holmlund P., Holt J.W., Jacobel R.W., Jenkins A., Jokat W., Jordan T., King E.C., Kohler J., Krabill W., Riger‑Kusk M., Langley K.A., Leitchenkov G., Leuschen C., Luyendyk B.P., Matsuoka K., Mouginot J., Nitsche F.O., Nogi Y., Nost O.A., Popov S.V., Rignot E., Rippin D.M., Rivera A., Roberts J., Ross N., Siegert M.J., Smith A.M., Steinhage D., Studinger M., Sun B., Tinto B.K., Welch B.C., Wilson D., Young D.A., Xiangbin C., Zirizzotti A. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere. 2013, 7: 375–393. doi:10.5194/tc73752013.

7. Kotlyakov V.M., Vasil’ev L.N., Moskalevsky M.Yu., Khromova T.Y. Moving of continental ice and massbalance of the Antarctic ice sheet. Izmenenie okruzhay‑ushchey sredy i klimata. Prirodnye i svyasannye s nimi tecknogennye katastrofy. Changing of environment and climate. Natural and technogenic catastrophes. V. 3. Pt. 2. Prirodnye protsessy v polyarnykh oblastyakh Zemli. Natural processes in polar regions of the Earth. Moscow: Institute of Geogrаphy RAS, 2009: 97–106. [In Russian].

8. Kotlyakov V.M., Vasil’ev L.N., Moskalevsky M.Yu. Change of massbalance of the Antarctic ice sheet over 50 years. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2011, 438 (2): 263–266. [In Russian].

9. Moskalevsky M.Yu., Khromova T.Y. Dynamics of moving of continental ice in the East Antarctica over the second half of 20th century. Arktika i Antarktika. Arctic and Antarctic. 2008, 7 (41): 56–64. [In Russian].

10. Giovinetto M.B., Bentley C.R. Surface balance in ice drainage systems in Antarctica. Antarctic Journ. of the United States. 1985, 20 (4): 6–13.

11. Vaughan D.G., Bamber J.L., Giovinetto M.B., Russel J., Cooper A.P.R. Reassessment of net surface mass balance in Antarctica. Journ. of Climate. 1999, 12 (4): 933–946. doi: 10.1175/15200442(1999)012<0933:RONSMB>2.0.CO;2.

12. Giovinetto M.B., Zwally H.J. Spatial distribution of net surface accumulation on the Antarctic ice sheet. Annals of Glaciology. 2000, 31: 171–178. doi: 10.3189/172756400781820200.

13. Atlas Antarktiki. Atlas of Antarctic. Moscow–Leningrad, 1966. V. 1: 225 p. [In Russian].

14. Atlas Antarktiki. Atlas of Antarctic. Leningrad: Gidrometeoizdat, 1969. V. 2: 598 p. [In Russian].

15. Bull C. Snow accumulation in Antarctica. [Contrib. № 156. Institute of Polar Studies, Ohio State University]. Research in Antarctic. Washington, D.C: American Association for the Advancement of Science, 1971: 367–421.

16. Kotlyakov V.M., Barkov N.I., Loseva I.A., Petrov V.I. New map of nourishment of the Antarctic ice sheet. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1974, 24: 155–159. [In Russian].

17. World Atlas of Snow and Ice Resources. Ed. V.M. Kotlyakov. Moscow: Russian Academy of Sсiences, 1997: 392 p. [In Russian].

18. Kotlyakov V.M. Izbrannye sochineniya. Selected works. V. 1. Glyatsiologiya Antarktidy. Glaciology of Antarctica. Moscow: Nauka, 2000: 431 p. [In Russian].

19. Arthern R.J., Vaughan D.G., Rankin A.M., Mulvaney R., Thomas E.R. In situ measurements of Antarctic snow compaction compared with predictions of models. Journ. of Geophys. Research. 2010, 115 (F3): F03011. doi: 10.1029/2009JF001306.

20. Zwally H.J., Giovinetto M.B., Jun L., Cornejo H.G., Beckley M.A., Brenner A.C., Saba J.L., Yi D. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sealevel rise: 1992–2002. Journ. of Glaciology. 2005, 51 (175): 509–527. doi: 10.3189/ 172756505781829007.

21. Rignot E., Bamber J.L., van den Broeke M.R., Davis C., Li Y., van de Berg W.J., van Meijgaard E. Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nature Geoscience. 2008, 1 (2): 106–110. doi: 10.1038/ngeo102.

22. Mouginot J., Rignot E., Scheuchl B. Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophys. Research Letters. 2014, 41 (5): 1576–1584. doi: 10.1002/2013GL059069.

23. Sasgen I., Martinec Z., Fleming K. Regional icemass changes and glacial-isostatic adjustment in Antarctica from GRACE. Earth Planetary Science Letters. 2007, 264 (3): 391–401. doi: 10.1016/j.epsl.2007.09.029.

24. Riva R.E.M., Gunter B.C., Urban T.J., Vermeersen B.L.A., Lindenbergh R.C., Helsen M.M., Bamber J.L., van de Wal R.S.W., van den Broeke M.R., Schutz B.E. Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planetary Science Letters. 2009, 288: 516–523. doi: 10.1016/j. epsl.2009.10.013.

25. Horwath M., Dietrich R. Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys. Journ. International. 2009, 177 (3): 849–864. doi: 10.1111/j.1365246X.2009.04139.x.

26. Van Wessem J.M., Reijmer C.H., Morlighem M., Mouginot J., Rignot E., Medley B., Joughin I., Wouters B., Depoorter M.A., Bamber J.L., Lenaerts J.T.M., De Van Berg W.J., Van Den Broeke M.R., Van Meijgaard E. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journ. of Glaciology.

27. , 60 (222): 761–770. doi: 10.3189/ 2014JoG14J051.

28. Lenaerts J.T.M., Van den Broeke M.R., Van de Berg W.J., Van Meijgaard E., Munneke P.K. A new, highresolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Research Letters. 2012, 39 (4): L04501. doi: 10.1029/2011GL050713.

29. Shepherd A., Ivins E.R., Geruo F., Barletta V.R., Bentley M.J., Bettadpur S., Briggs K.H., Bromwich D.H., Forsberg R., Galin N., Horwath M., Jacobs S., Joughin I., King M.A., Lenaerts J.T.M., Li J., Ligtenberg S.R.M., Luckman A., Luthcke S.B., McMillan M., Meister Rakia Mi.G., Mouginot J., Muir A., Nicolas J.P., Paden J., Payne A.J., Pritchard H., Rignot E., Rott H., Sørensen L.S., Scambos T.A., Scheuchl B., Schrama E.J.O., Smith B., Sundal A.V., van Angelen J.H., van de Berg W.J., van den Broeke M.R., Vaughan D.G., Velicogna I., Wahr J., Whitehous L., Wingham D.J., Yi D., Young D., Zwally H.J. A reconciled estimate of icesheet mass balance. Science. 2012, 338 (6111): 1183–1189. doi: 10.1126/ science.1228102.

30. Hanna E., Navarro F.J., Pattyn F., Domingues C.M., Fettweis X., Ivins E.R., Nicholls R.J., Ritz C., Smith B., Tulaczyk S., Whitehouse P.L., Zwally H.J. Icesheet mass balance and climate change. Nature. 2013, 498 (7452): 51–59. doi: 10.1038/nature12238.

31. Sasgen I., Konrad H., Ivins E.R., Van den Broeke M.R., Bamber J.L., Martinec Z., Klemann V. Antarctic icemass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacialisostatic adjustment based on GPS uplift rates. The Cryosphere. 2013, 7: 1499–1512. doi: 10.5194/tc714992013.

32. King M.A., Bingham R.J., Moore P., Whitehouse P.L., Bentley M.J., Milne G.A. Lower satellitegravimetry estimates of Antarctic sealevel contribution. Nature. 2012, 491: 586–589. doi: 10.1038/nature11621.

33. Zwally J.H., Li J., Robbins J.W., Saba J.L., Yi D., Brenner A.C. Mass gains of the Antarctic ice sheets exceeded losses. Journ. of Glaciology. 2015, 61 (230): 1019–1036. doi: 10.3189/2015JoG15J071.

34. Harig C., Simons F.J. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains. Earth Planetary Science Letters. 2015, 415: 134–141. doi: 10.1016/j.epsl.2015.01.029.

35. Zammit‑Mangion A., Rougier J.C., Bamber J.L., Schoen N.W. Resolving the Antarctic contribution to sealevel rise: A hierarchical modelling framework. Environmetrics. 2014, 25: 245–264. doi: 10.1002/env.2247.

36. Martín‑Español A., Zammit‑Mangion A., Clarke P.J., Flament T., Helm V., King M.A., Luthcke S.B., Petrie E., Rémy F., Schön N., Wouters B., Bamber J.L. Spatial and temporal Antarctic Ice Sheet mass trends, glacioisostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data. Journ. of Geophys. Research. Earth Surface. 2016, 121: 182–200. doi: 10.1002/2015JF003550.

37. Barletta V.R., Sørensen L.S., Forsberg R. Scatter of mass changes estimates at basin scale for Greenland and Antarctica. Cryosphere. 2013, 7 (5): 1411–1432. doi: 10.5194/tc714112013.

38. Ivins E.R., Thomas S.J., Wahr J., Schrama E.O.J., Landerer F.W., Simon K.M. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. Journ. of Geophys. Research. Solid Earth. 2013, 118 (6): 3126–3141. doi: 10.1002/jgrb.50208.

39. Luthcke S.B., Sabaka T.J., Loomis B.D., Arendt A.A., McCarthy J.J., Camp J. Antarctica, Greenland and Gulf of Alaska landice evolution from an iterated GRACE global mascon solution. Journ. of Glaciology. 2013, 59 (216): 613–631. doi: 10.3189/2013JoG12J147.

40. Velicogna I., Wahr J. Time variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys. Researh Letters. 2013, 40 (12): 3055–3063. doi: 10.1002/grl.50527.

41. Helm V., Humbert A. Miller H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat2. Cryosphere. 2014, 8: 1539–1559. doi: 10.5194/tc815392014.

42. McMillan M., Shepherd A., Sundal A., Briggs K., Muir A., Ridout A., Hogg A., Wingham D. Increased ice losses from Antarctica detected by CryoSat2. Geophys. Research Letters. 2014, 41: 3899–3905. doi: 10.1002/2014GL060111.

43. Schrama E., Wouters B., Rietbroek R. A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data. Journ. of Geophys. Research. Solid Earth. 2014, 119 (7): 6048–6066. doi: 10.1002/2013JB010923.

44. Velicogna I., Sutterley T., van den Broeke M.R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time variable gravity data. Geoplys. Research Letters. 2014, 41 (22): 8130–8137. doi: 10.1002/2014GL06105244.

45. Williams S., Moore P., King M.A., Whitehouse P. Revisiting GRACE Antarctic ice mass trends and accelerations considering autocorrelation. Earth Planetary Science Letters. 2014, 385: 12–21. doi: 10.1016/j.epsl.2013.10.016.

46. Ekaykin A.A., Vladimirova D.O., Lipenkov V.Ya. Variations of snow accumulation rate in the Central Antarctica over the last 250 years. Led i Sneg. Ice and Snow. 2017, 57 (1): 5–9. [In Russian].

47. Frezzotti M., Scarchilli C., Becagli S., Proposito M., Urbini S. A synthesis of the Antarctic surface mass balance during the last 800 yr. The Cryosphere. 2013, 7: 303–319. doi: 10.5194/tc73032013.

48. Scambos T., Shuman C. Comment on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H.J. Zwally and others. Journ. of Glaciology. 2016, 62 (233): 599–603. doi: 10.1017/jog.2016.59.

49. Schröder L., Richter A., Fedorov D.V., Eberlein L., Brovkov E.V., Popov S.V., Knöfel C., Horwath M., Dietrich R., Matveev A.Y., Scheinert M., Lukin V. Validation of satellite altimetry by kinematic GNSS in central East Antarctica. The Cryosphere Discussion. 2017. in review. doi:10.5194/tc2016282.

50. Zwally J.H., Li J., Robbins J.W., Saba J.L., Yi D., Brenner A.C. Response to Comment by T. SCAMBOS and C. SHUMAN (2016) on ‘Mass gains of the Antarctic ice sheet exceed losses’ by H. J. Zwally and others (2015). Journ. of Glaciology. 2016, 62 (235): 990–992. doi: 10.1017/jog.2016.91.

51. Watkins M.M., Wiese D.N., Yuan D.‑N., Boening C., Landerer F.W. Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons. Journ. of Geophys. Research. Solid Earth. 2015, 120: 2648–2671. doi: 10.1002/2014JB011547.

52. Groh A., Horwath M. The method of tailored sensitivity kernels for GRACE mass change estimates. Geophys. Research Abstracts. 2016, 18. EGU201612065.

53. Zwally H.J., Giovinetto M.B., Beckley M.A., Saba J.L. Antarctic and Greenland Drainage Systems. GSFC Cryospheric Sciences Laboratory, 2012. http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php

54. Hay C.C., Morrow E., Kopp R.E., Mitrovica J.X. Probabilistic reanalysis of twentiethcentury sealevel rise. Nature. 2015, 517 (7535): 481–484. doi: 10.1038/nature14093.

55. Kopp R.E., Kemp A.C., Bittermann K., Horton B.P., Donnelly J.P., Gehrels W.R., Rahmstorf S. Temperaturedriven global sealevel variability in the Common Era. Proc. of the National Academy of Sciences. 2016, 113 (11): E1434–E1441. doi: 10.1073/pnas.1517056113. http://www.pnas.org/content/113/11/E1434.full


Supplementary files

For citation: Kotlyakov V.M., Glazovsky A.F., Moskalevsky M.Y. Dynamics of the ice mass in Antarctica in the time of warming. Ice and Snow. 2017;57(2):149-169. https://doi.org/10.15356/2076-6734-2017-2-149-169

Views: 2805

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)