Холодный эпизод около 8200 лет назад в Северной Европе: анализ эмпирических данных и возможных причин


https://doi.org/10.15356/2076-6734-2017-1-117-132

Полный текст:


Аннотация

Уже более 20 лет в Северной Европе известен холодный эпизод около 8200 лет назад. Похолодание продолжалось около 160 лет, температуры воздуха снижались на 1–2 °С, а в отдельных районах – более чем на 3 °С. Предполагается, что снижение температур воздуха было связано с поступлением больших объёмов пресной воды в Северную Атлантику в результате распада и таяния ледников. Подобный механизм имеет прямое отношение к оценкам будущего климата при развитии современного глобального потепления. Поскольку таяние горных ледников и морских льдов в Полярном бассейне способствует опреснению верхнего слоя океана, при развитии потепления в районах, непосредственно прилегающих к Северной Атлантике, можно ожидать некоторого снижения температуры воздуха в высоких широтах.

Об авторах

И. И. Борзенкова
Государственный гидрологический институт
Россия
Санкт-Петербург


О. К. Борисова
Институт географии РАН
Россия
Москва


Е. Л. Жильцова
Государственный гидрологический институт
Россия
Санкт-Петербург


Т. В. Сапелко
Институт озероведения РАН
Россия
Санкт-Петербург


Список литературы

1. Kobashi T., Severinghaus J.P., Brook E.J., Barnola J.­M., Grachev A.M. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice // Quaternary Science Reviews. 2007. V. 26. P. 1212–1222.

2. Rasmussen S.O., Bigler M., Blockley S.P., Blunier T., Buchardt S.L., Clausen H.B., Cvijanovic I., Dahl-Jensen D., Johnsen S.J., Fischer H., Seierstad I.K., Steffensen J.P., Anders M., Svensson A.M., Vallelonga P., Vinther B.M., Walker M.J.C., Wheatley J.J., Winstrup M. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy // Quaternary Science Reviews. 2014. V. 106. P. 14–28.

3. Thomas E.R., Wolff E.W., Mulvaney R., Steffensen J.P., Johnsen S.J., Arrowsmith C., White J.W.C., Vaughn B., Popp T. The 8.2 ka event from Greenland ice cores // Quaternary Science Reviews. 2007. V. 26. P. 70–81.

4. Fleitmann D., Mudelsee M., Burns S.J., Bradley R.S., Kramers J., Matter A. Evidence for widespread climatic anomaly at around 9.2 ka before present // Paleoceanography. 2008. V. 23. PA1102. doi:10.1029/2007PA001519.

5. Hoek W.Z., Bos J.A.A. Early Holocene climate oscillations – causes and consequences // Quaternary Science Reviews. 2007. V. 26. P. 1901–1906.

6. Grachev A.M., Severinghaus J.P. A revised +10±4 °C magnitude of the abrupt change in Greenland temperature at the Younger Dryas termination using published GISP2 gas isotope data and air thermal diffusion constants // Quaternary Science Reviews. 2005. V. 4. P. 513–519.

7. Borzenkova I.I., Zorita E., Borisova O.K., Kalniņa L., Kisielienė D., Koff T., Kuznetsov D., LemdahlG., Sapelko T., Stančikaitė M., Subetto D. Second assessment of climate change for the Baltic Sea Basin // Heidelberg, New York, Dordrecht, London: Springer Verlag, 2015. P. 25–50.

8. Борзенкова И.И., Борисова О.К., Жильцова Е.Л., Са­пелко Т.В. Холодные эпизоды раннего голоцена в Северной Европе: анализ эмпирических данных и возможных причин // Материалы Междунар. конф. «Водные ресурсы: изучение и управление»: Т. 1. Петрозаводск, 2016. С. 171–177.

9. Alley R.B., Ágústsdóttir A.M. The 8k event: Cause and consequences of a major Holocene abrupt climate change // Quaternary Science Reviews. 2005. V. 24. P. 1123–1149.

10. Broecker W.S., Peteet D.M., Rind D. Does the oceanatmosphere system have more than one stable mode of operation? // Nature. 1985. V. 315. P. 21–26.

11. Clark P.U., Marshall S.J., Clarke G.K.C., Hostetler S.W., Licciardi J.M., Teller J.T. Freshwater forcing of abrupt climate change during the last glaciation // Science. 2001. V. 293. P. 283–287.

12. Dixit Y., Hodell D.A., Sinha R., Petrie C.A. Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. // Earth Planetary Science Letters. 2014. V. 391. P. 16–23.

13. Борзенкова И.И. История оледенения арктического бассейна: взгляд из прошлого для оценки возможных изменений в будущем // Лёд и Снег. 2016. Т. 56. № 2. С. 221–234. doi: 10.15356/2076-67342016-2-221-234

14. Morrill C., Jacobsen R.M. How widespread were climate anomalies 8200 years ago? // Geophys. Research Letters. 2005. V. 32. L19701. doi:10.1029/2005GL023536.

15. Morrill C., Anderson D.M, Bauer B.A., Buckner R., Gille E.P., Gross W.S, Hartman M., Shah A. Proxy benchmarks for intercomparison of 8.2 ka simulations // Climate Past. 2013. V. 9. P. 423–432.

16. Rohling E.J., Pälike H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago // Nature. 2005. V. 434. P. 975–979.

17. Seppä H., Birks H.J.B., Giesecke T., Hammarlund D., Alenius T., Antonsson K., Bjune A.E., Heikkilä M., MacDonald G.M., Ojala A.E.K., Telford R.J., Veski S. Spatial structure of the 8200 cal yr BP event in Northern Europe // Climate Past. 2007. V. 3. P. 165–195.

18. Seppä H., Birks H.J.B. Holocene climate reconstructions from the Fennoscandian tree-line area based on pollen data from Toskaljavri // Quaternary Research. 2002. V. 57. P. 191–199.

19. Veski S., Seppä H., Ojala A.E.K. Cold event at 8200 yr BP recorded in annually laminated lake sediments in eastern Europe // Geology. 2004. V. 32. P. 681–684.

20. Wiersma A.P., Renssen H., Goosse H., Fichefet T. Evaluation of different freshwater forcing scenarios for the 8.2 ka BP event in a coupled climate model // Climate Dynamics. 2006. V. 27. P. 831–849.

21. Daley T.J., Thomas E.R., Holmes J.A., Street-PerrottF.A., Chapman M.R., Tindall J.C., Valdes P.J., Loader N.J., Marshall J.D., Wolff E.W., Hopley P.J., Atkinson T.C., Barber K.E., Fisher E.H., Robertson I., Roberts C.N. The 8200 yr BP cold event in stable isotope records from the North Atlantic region // Global and Planetary Change. 2011. V. 79. P. 288–302.

22. Boch R., Spötl C., Kramers J. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria // Quaternary Science Reviews. 2009. V. 28. P. 2527–2538.

23. Fohlmeister J., Schröder-Ritzrau A., Scholz D., Spötl C., Riechelmann D.F.C., Mudelsee M., Wackerbarth A., Gerdes A., Riechelmann S., Immenhauser A., Richter D.K., Mangini A. Bunker Cave stalagmites: an archive for central European Holocene climate variability // Climate Past. 2012. V. 8. P. 1751–1764.

24. Szeroczyńska K., Zawisza E. Records of the 8200 cal BP cold event reflected in the composition of subfossil Cladocera in the sediments of three lakes in Poland // Quaternary International. 2011. V. 233. P. 185–193.

25. Lauterbach S., Brauer A., Andersen N., Danielopol D.L., Dulski P., H ls M., Milecka K., Namiotko T., Plessen B., von Grafenstein U., and DECLAKES participants. Multi-proxy evidence for early to mid-Holocene environmental and climatic changes in northeastern Poland // Boreas. 2011. V. 40. P. 57–72.

26. Dolven J.K., Cortese G., Bjørklund K.R. A high-resolution radiolarian-derived paleotemperature record for the Late Pleistocene-Holocene in the Norwegian Sea // Paleoceanography. 2002. V. 17. № 4. P. 1072. doi:10.1029/2002PA000780.

27. Ellison C.R.W., Chapman M.R., Hall I.R. Surface and deep ocean interactions during the cold climate event 8200 years ago // Science. 2006. V. 312. № 5782. P. 1929–1932.

28. Jennings A., Andrews J., Pearce C., Wilson L., Ólfasdótttir S. Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre // Quaternary Science Reviews. 2015. V. 107. P. 62–80.

29. Moros M., Emeis K., Risebrobakken B., Snowball I., Kuijpers A., McManus J., Jansen E. Sea surface temperatures and ice rafting in the Holocene North Atlantic: Climate influences on northern Europe and Greenland // Quaternary Science Reviews. 2004. V. 23. P. 2113–2126.

30. http://www.fluvial-systems.net/Borzenkova_et_al_supplement.html

31. Leuenberger M.C., Lang C., Schwander J. Delta 15N measurements as a calibration tool for the paleothermometer and gas-ice age differences: a case study for the 8200 BP event on GRIP ice // Journ. of Geophys. Research. 1999. V. 1 (D18). P. 22,163–22,170.

32. Monnin E., Steig E.J., Siegenthaler U., Kawamura K., Schwander J., Stauffer B., Stocker T.F., Morse D.L., Barnola J.­M., Bellier B., Raynaud D., Fischer H. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores // Earth Planetary Science Letters. 2004. V. 224. P. 45–54.

33. Ahn J., Brook E.J., Buizert C. Response of atmospheric CO2 to abrupt cooling event 8200 years ago // Geophys. Research Letters. 2014. V. 41. P. 604–609.

34. Holmes J.A., Tindall J., Roberts N., Marshall W., Marshall J.D., Bingham A., Feeser I., O'Connell M., Atkinson T., Jourdan A.­L., March A., Fisher E.H. Lake isotope records of the 8200-year cooling event in western Ireland: Comparison with model simulations // Quaternary Science Reviews. 2016. V. 131. P. 341–349.

35. von Grafenstein U., Erlenkeuser H., Müller J., Jouzel J., Johnsen S.J. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland // Climate Dynamics. 1998. V. 14. P. 73–81.

36. Giraudeau J., Jennings A.E., Andrews J.T. Timing and mechanisms of surface and intermediate water circulation changes in the Nordic Seas over the last 10,000 cal. years: a view from the North Iceland shelf // Quaternary Science Reviews. 2004. V. 23. P. 2127–2139.

37. Davis B.A.S., Brewer S., Stevenson A.C., Guiot J. The temperature of Europe during the Holocene reconstructed from pollen data // Quaternary Science Reviews. 2003. V. 22. P. 1701–1716.

38. Tinner W., Lotter A.F. Central European vegetation response to abrupt climate change at 8.2 ka // Geology. 2001. V. 29. P. 551–554.

39. Antonsson K., Seppä H. Holocene temperatures in Bohuslän, southwest Sweden: a quantitative reconstruction from fossil pollen data // Boreas. 2007. V. 36. P. 400–410.

40. Heikkilä M., Seppä H. A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland // Quaternary Science Reviews. 2003. V. 22. P. 541–554.

41. Heikkilä M., Seppä H. Holocene climate dynamics in Latvia, eastern Baltic region: a pollen-based summer temperature reconstruction and regional comparison // Boreas. 2010. V. 39. № 4. P. 705–719.

42. Ojala A.E.K., Heinsalu A., Kauppila T., Alenius T., Saarnisto M. Characterizing changes in the sedimentary environment of a varved lake sediment record in southern central Finland around 8000 cal. yr BP // Journ. of Quaternary Science. 2008. V. 23 (8). P. 765–775.

43. Seppä H., Poska A. Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns // Quaternary Research. 2004. V. 61. P. 22–31.

44. Stančikaitė M., Kisielienė D., Moe D., Vaikutienė G. Lateglacial and early Holocene environmental changes in northeastern Lithuania // Quaternary International. 2009. V. 207. P. 80–92.

45. Velle G., Brooks S.J., Birks H.J.B., Willassen E. Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia // Quaternary Science Reviews. 2005. V. 24. P. 1429–1462.

46. Šeirienė V., Stančikaitė M., Kisielienė D., Šinkūnas P. Lateglacial environment inferred from palaeobotanical and 14C data of sediment sequence from Lake Kašučiai, West Lithuania // Baltica. 2006. V. 19. № 2. P. 80–90.

47. Snowball I., Muscheler R., Zillén L., Sandgren P., Stanton T., Ljung K. Radiocarbon wiggle matching of Swedish lake varves reveals asynchronous climate changes around the 8.2 kyr cold event // Boreas. 2010. V. 39. P. 720–733.

48. Novenko E.Yu., Tsyganov A.N., Volkova E.M., Babeshko K.V., Lavrentiev N.V., Payne R.J., Mazei Yu.A. The Holocene paleoenvironmental history of central European Russia reconstructed from pollen, plant macrofossil, and testate amoeba analyses of the Klukva peatland, Tula region // Quaternary Research. 2015. V. 83. № 3. P. 459–468.

49. Nesje A., Dahl S.O. The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences // Journ. of Quaternary Science. 2001. V. 16. P. 155–166.

50. Bjune A.E., Birks H.J.B., Seppä H. Holocene vegetation and climate history on a continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofossils from lakes situated at or near the present tree-line // Boreas. 2004. V. 33. P. 211–223.

51. Barber D.C., Dyke A., Hillaire-Marcel C., Jennings A.E., Andrews J.T., Kerwin M.W., Bilodeau G., McNeely R., Southon J., Morehead M.D., Gagnon J.­M. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes // Nature. 1999. V. 400. P. 344–348.

52. Clarke G. K. C., Leverington D.W., Teller J.T., Dyke A.S. Paleohydraulics of the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event // Quaternary Science Reviews. 2004. V. 23. P. 389–407.

53. Stouffer R.J., Gregory J.M., Dixon K.W., Spelman M.J., Hurlin W., Weaver A.J., Eby M., Flato G.M., Hasumi H., Hu A., Jungclaus J.H., Kamenkovich I.V., Levermann A., Montoya M., Murakami S., Nawrath S., Oka A., Peltier W.R., Robitaille D.Y., Sokolov A., Vettoretti G. Weber S.L. Investigating the causes of the response of the thermohaline circulation to past and future climate changes // Journ. of Climate. 2006. V. 19. P. 1365–1387.

54. Herold N., Yin Q.Z., Karami M.P., Berger A. Modeling the climatic diversity of the warm interglacials // Quaternary Science Reviews. 2012. V. 56. P. 126–141.

55. Bos J.A.A., van Geel B., van der Plicht J., Bohncke S.J.P. Preboreal climate oscillations in Europe: Wiggle-match dating and synthesis of Dutch high-resolution multi-proxy records // Quaternary Science Reviews. 2007. V. 26. P. 1927–1950.

56. Hoffman J.S., Carlson A.E., Winsor K., Klinkhammer G.P., LeGrande A.N., Andrews J.T., Strasser J.C. Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea // Geophys. Research Letters. 2012. V. 39. P. L18703. doi:10.1029/2012GL053047.

57. Li Y.-X., Tornqvist T.E., Nevitt J.M., Kohl B. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago // Earth Planetary Science Letters. 2012. V. 315–316. P. 41–50.

58. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Еds.: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2014. 1535 p.

59. Шикломанов И.А., Георгиевский В.Ю., Шиклома­нов А.И., Голованов О.Ф. Новые данные о стоке крупнейших рек, впадающих в Северный Ледовитый океан // Полярная криосфера и воды суши. Москва – Санкт-Петербург: Paulsen, ААНИИ, 2011. С. 263–287.

60. Rahmstorf S., Box J., Feulner G., Mann M., Robinson A., Rutherford S., Schaffernicht E. Exceptional twentiethcentury slowdown in Atlantic Ocean overturning circulation // Nature Climate Change. 2015. V. 5. P. 475–480.


Дополнительные файлы

Для цитирования: Борзенкова И.И., Борисова О.К., Жильцова Е.Л., Сапелко Т.В. Холодный эпизод около 8200 лет назад в Северной Европе: анализ эмпирических данных и возможных причин. Лёд и Снег. 2017;57(1):117-132. https://doi.org/10.15356/2076-6734-2017-1-117-132

For citation: Borzenkova I.I., Borisova O.K., Zhiltsova E.L., Sapelko T.V. Cold period in the Northern Europe in the past (about 8200 years ago): analysis of empirical data and possible causes. Ice and Snow. 2017;57(1):117-132. (In Russ.) https://doi.org/10.15356/2076-6734-2017-1-117-132

Просмотров: 232

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)