Arctic sea ice area changes in CMIP3 and CMIP5 climate models’ ensembles
https://doi.org/10.15356/2076-6734-2017-1-77-107
Abstract
The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the results exhibit considerable spread. Here, we compare results from the two last generations of climate models, CMIP3 and CMIP5, with respect to total and regional Arctic sea ice change. Different characteristics of sea ice area (SIA) in March and September have been analysed for the Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA to changes in Northern Hemisphere (NH) temperature is investigated and dynamical links between SIA and some atmospheric variability modes are assessed.
CMIP3 (SRES A1B) and CMIP5 (RCP8.5) models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle. The spatial patterns of SIC variability improve in CMIP5 ensemble, most noticeably in summer when compared to HadISST1 data. A better simulation of summer SIA in the Entire Arctic by CMIP5 models is accompanied by a slightly increased bias for winter season in comparison to CMIP3 ensemble. SIA in the Barents Sea is strongly overestimated by the majority of CMIP3 and CMIP5 models, and projected SIA changes are characterized by a high uncertainty. Both CMIP ensembles depict a significant link between the SIA and NH temperature changes indicating that a part of inter-ensemble SIA spread comes from different temperature sensitivity to anthropogenic forcing. The results suggest that, in general, a sensitivity of SIA to external forcing is enhanced in CMIP5 models. Arctic SIA interannual variability in the end of the 20th century is on average well simulated by both ensembles. To the end of the 21st century, September variability is strongly reduced in CMIP5 models under RCP8.5 scenario, whereas variability changes in CMIP3 and in both ensembles in March are relatively small. The majority of models in both CMIP ensembles demonstrate an ability to capture a negative correlation of interannual SIA variations in the Barents Sea with North Atlantic Oscillation and sea level pressure gradient in the western Barents Sea opening serving as an index of oceanic inflow to the Sea.
About the Authors
V. A. SemenovRussian Federation
Moscow
T. Martin
Germany
Kiel
L. K. Behrens
Germany
Bremen
M. Latif
Germany
Kiel
E. S. Astafieva
Russian Federation
Moscow
References
1. Bekryaev R., Polyakov I., Alexeev V. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. Journ. of Climate. 2010, 23: 3888–3906.
2. Holland M.M., Bitz C.M. Polar amplification of climate change in coupled models. Climate Dynamics. 2003, 21: 221–232.
3. Alexeev V.A., Langen P.L., Bates J.R. Polar amplification of surface warming on an aquaplanet in «ghost forcing» experiments without sea ice feedbacks. Climate Dynamics. 2005, 24: 655–666.
4. Graversen R.G., Mauritsen T., Tjernstrom M., Kallen E., Svensson G. Vertical structure of recent Arctic warming. Nature. 2008, 451: 53–54.
5. Screen J.A., Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature. 2010, 464: 1334–1337.
6. Serreze M.C., Barry R.G. Processes and impacts of Arctic amplification: A research synthesis. Global Planetary Change. 2011, 77: 85–96.
7. Walsh J.E. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary Change. 2014, 117: 52–63.
8. Pithan F., Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience. 2014, 7: 181–184.
9. Stroeve J., Holland M.M., Meier W., Scambos T., Serreze M. Arctic sea ice decline: Faster than forecast. Geophys. Research Letters. 2007, 34 (9): 1–5. doi: 10.1029/2007GL029703.
10. Stroeve J.C., Kattsov V., Barrett A., Serreze M., Pavlova T., Holland M., Meier W.N. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Research Letters. 2012, 39. doi: 10.1029/2012GL052676.
11. Ivanov V.V., Alexeev V.A., Alexeeva T.A., Koldunov N.V., Repina I.A., Smirnov A.V. Does Arctic Ocean ice cover become seasonal? Earth Observations and Remote Sensing. 2013, 4: 50–65. [In Russian].
12. Kinnard C., Zdanowicz C.M., Fisher D.A., Isaksson E., de Vernal A., Thompson L.G. Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature. 2011, 479: 509–512.
13. Halfar J., Adey W.H., Kronz A., Hetzinger S., Edinger E., Fitzhugh W.W. Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proc. of the National Academy of Sciences of the United States of America. 2014, 110: 19737–19741. doi: 10.1073/pnas.1313775110.
14. Polyakov I., Alekseev G., Bekryaev R., Bhatt U.S., Colony R., Johnson M.A., Karklin V., Walsh D., Yulin A. Long-term ice variability in Arctic marginal seas. Journ. of Climate. 2003, 16: 2078–2085.
15. Divine D, Dick C. Historical variability of sea ice edge position in the Nordic Seas. Journ. of Geophys. Research – Oceans. 2006, 111: C01001. doi: 10.1029/2004jc002851.
16. Semenov V.A. Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region. Doklady Earth Sciences. 2008, 418 (1): 106–109. doi: 10.1134/S1028334X08010200.
17. Semenov V.A., Latif M. The early twentieth century warming and winter Arctic sea ice. The Cryosphere. 2012, 6: 1231–1237.
18. Day J.J., Hargreaves J.C., Annan J.D., Abe-Ouchi A. Sources of multi-decadal variability in Arctic sea ice extent. Environmental Research Letters. 2012, 7: 034011. doi: 10.1088/1748-9326/7/3/034011.
19. Miles M.W., Divine D., Furevik T., Jansen E., Moros M., Ogilvie A.E.J. A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Research Letters. 2014, 41: 463–469. doi: 10.1002/2013GL058084.
20. Alekseev G., Kuzmina S.I., Nagurny A., Ivanov N.E. Arctic Sea Ice Data Sets in the Context of Climate Change During the 20th Century. Climate variability and extremes during the past 100 years. Series: Advances in Global Change Research. 2007, 33: 47–63.
21. Alekseev G., Danilov A.I., Kattsov V.M., Kuz’mina S.I., Ivanov N.E. Changes in the climate and sea ice of the Northern Hemisphere in the 20th and 21st centuries from data of observations and modelling. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the RAS. Physics of Atmosphere and Ocean. 2009, 45 (6): 723–735. doi: 10.1134/S0001433809060012. [In Russian].
22. Vihma T. Effects of Arctic sea ice decline on weather and climate: A Review. Surv. Geophysics. 2014. doi: 10.1007/s10712-014-9284-0.
23. Walsh J.E., Johnson C.M. Analysis of Arctic sea ice fluctuations, 1953–77. Journ. of Physical Oceanography. 1979, 9: 580–591.
24. Andersen S., Tonboe R., Kaleschke L., Heygster G., Pedersen L.T. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice. Journ. of Geophys. Research. 2007, 112: 18 P. doi: 10.1029/2006JC003543.
25. Kattsov V.M., Ryabinin V.E., Overland J.E., Serreze M.C., Visbeck M., Walsh J.E., Meier W., Zhang X. Arctic seaice change: a grand challenge of climate science. Journ. of Glaciology. 2010, 56: 1115–1121.
26. Ivanova N., Johannessen O.M., Pedersen L.T., Tonboe R.T. Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Algorithms. IEEE Transactions on Geoscience and Remote Sensing. 2014, 52. doi: 10.1109/TGRS.2014.2310136.
27. Notz D. Sea-ice extent and its trend provide limited metrics of model performance. The Cryosphere. 2014, 8 (1): 229–243. doi: 10.5194/tc-8-229-2014.
28. Meehl G.A., Covey C., Delworth T., Latif M., McAvaney B., Mitchell J.F.B., Stouffer R.J., Taylor K.E. The WCRP CMIP3 multimodel dataset – A new era in climate change research. Bull. of the Amer. Meteorol. Society. 2007, 88: 1383–1394. doi: 10.1175/bams-88-9-1383.
29. IPCC: Climate Change 2007: The Physical Science Basis – Contribution of Working Group I to the Fourth Assessment Report, 15 IPCC Model Documentation: CMIP3 climate model documentation, references, and links, Intergovernmental Panel on Climate Change, available at: http://www-pcmdi.llnl.gov/ipcc/modeldocumentation/ipcc model documentation.php, Cambridge: Cambridge University Press, 2007.
30. Wang M., Overland J.E. A sea ice free summer Arctic within 30 years? Geophys. Research Letters. 2009, 36: L07502. doi: 10.1029/2009GL0307820.
31. Johannessen O.M., Bengtsson L., Miles M.W., Kuzmina S.I., Semenov V.A., Alekseev., Nagurnyi A., Zakharov V.F., Bobylev L., Pettersson L.H., Hasselmann K., Cattle A. Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A. 2004, 56: 328–341.
32. Notz D., Marotzke J. Observations reveal external driver for Arctic sea-ice retreat. Geophys. Research Letters. 2012, 39: L08502. doi: 10.1029/2012gl051094.
33. Bengtsson L., Semenov V.A., Johannessen O.M. The Early Twentieth-Century Warming in the Arctic – A Possible Mechanism. Journ. of Climate. 2004, 17: 4045–4057.
34. Wood K.R., Overland J.E., Jónsson T., Smoliak B. Air temperature variations on the Atlantic-Arctic boundary since 1802. Geophys. Research Letters. 2010, 37: L17708. doi: 10.1029/2010GL044176.
35. Taylor K.E., Stouffer R.J., Meehl G.A. An Overview of CMIP5 and the experiment design. Bull. of the Amer. Meteorol. Society. 2012, 93: 485–498. doi: 10.1175/BAMS-D-11-00094.1.
36. IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K.,. Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (eds.)]. Cambridge: Cambridge University Press, 2013: 1535 P. United Kingdom and New York, NY, USA. doi: 10.1017/CBO9781107415324.
37. Mauritsen T., Stevens B., Roeckner E., Crueger T., Esch M., Giorgetta M., Haak H., Jungclaus J., Klocke D., Matei D., Mikolajewicz U., Notz D., Pincus R., Schmidt H., Tomassini L. Tuning the climate of a global model. Journ. of Advances in Modeling of Earth System. 2012, 4: M00A01. doi: 10.1029/2012MS000154.
38. Eisenman I., Untersteiner N., Wettlaufer J.S. On the reliability of simulated Arctic sea ice in global climate models. Geophys. Research Letters. 2007, 34: L10501. doi: 10.1029/2007GL029914.
39. Hodson D.L.R., Keeley S.E., West A., Ridley J., Hawkins E., Hewitt H.T. Identifying uncertainties in Arctic climate change projections. Climate Dynamics. 2013, 40: 2849–2865. doi: 10.1007/s00382-012-1512-z.
40. Massonnet F., Fichefet T., Goosse H., Bitz C.M., Philippon-Berthier G., Holland M.M., Barriat P.Y. Constraining projections of summer Arctic sea ice. Cryosphere. 2012, 6: 1383–1394. doi: 10.5194/tc-6-1383-2012.
41. Overland J.E., Adams J.M., Bond N.A. Regional Variation of Winter Temperatures in the Arctic. Journ. of Climate. 1997, 10: 821–837.
42. Venegas S.A., Mysak L.A. Is there a dominant timescale of natural climate variability in the Arctic? Journ. of Climate. 2000, 13: 3412–3434.
43. Semenov V.A., Bengtsson L. Modes of the wintertime Arctic temperature variability. Geophys. Research Letters. 2003, 30 (15). doi: 10.1029/2003GL017112.
44. Rogers T.S., Walsh J.E., Rupp T.S., Brigham L.W., Sfraga M. Future Arctic marine access: analysis and evaluation of observations, models, and projections of sea ice. Cryosphere. 2013, 7: 321–332. doi: 10.5194/tc-7-321-2013.
45. Semenov V.A., Park W., Latif M. Barents Sea inflow shutdown: A new mechanism for climate changes. Geophys. Research Letters. 2009, 36. doi: 10.1029/2009GL038911.
46. Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Li C., Lien V.S., Olsen A., Omar A.M., Ottera O.H., Risebrobakken B., Sando A.B., Semenov V.A., Sorokina S.A. The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics. 2013, 51: 415–449. doi: 10.1002/rog.20017.
47. Kwok R. Recent Changes in Arctic Ocean Sea Ice Motion Associated with the North Atlantic Oscillation. Geophys. Research Letters. 2000, 27 (6): 775–778.
48. van Loon H., Rogers J. The seesaw in winter temperature between Greenland and northern Europe. Part I: General description. Monthly Weather Reviews. 1978, 106: 296–310.
49. Dickson R.R., Osborn T.J., Hurrell J.W., Meincke J., Blindheim J., Adlandsvik B., Vinje T., Alekseev G., Maslowski W. The Arctic Ocean response to the North Atlantic oscillation. Journ. of Climate. 2000, 13: 2671–2696.
50. Goosse H., Holland M.M. Mechanisms of Decadal Arctic Climate Variability in the Community Climate System Model, Version 2 (CCSM2). Journ. of Climate. 2005, 18: 3552–3570.
51. Flato G., Marotzke J., Abiodun B., Braconnot P., Chou S.C., Collins W., Cox P., Driouech F., Emori S., Eyring V., Forest C., Gleckler P., Guilyardi E., Jakob C., Kattsov V., Reason C., Rummukainen M. Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge: Cambridge University Press, 2013. United Kingdom and New York, NY, USA.
52. Collins M., Knutti R., Arblaster J., Dufresne J.L., Fichefet T., Friedlingstein P., Gao X., Gutowski W.J., Johns T., Krinner G., Shongwe M., Tebaldi C., A.J. Weaver and M. Wehner. Long-term climate change: Projections, commitments and irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge: Cambridge University Press, 2013. United Kingdom and New York, NY, USA.
53. Khon V.C., Mokhov I.I., Latif M., Semenov V.A., Park W. Perspectives of Northern sea route and Northwest Passage in the 21st century. Climatic Change. 2010, 100: 757–768. doi: 10.1007/s10584-009-9683-2.
54. Holland M.M., Bitz C.M., Tremblay L., Bailey D.A. The role of natural versus forced change in future rapid summer Arctic Ice Loss, Arctic Sea Ice decline: observations, projections, mechanisms, and implications. Geophys. Monograph Series. 2008, 180: 133–150.
55. Rayner N.A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journ. of Geophys. Research. 2003, 108 (D14). doi: 10.1029/2002JD002670.
56. Cavalieri D.J., Parkinson C.L. Gloersen P., Comiso J.C., Zwally H.J. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. Journ. of Geophys. Research. 1999, 104: 15.803–15.814.
57. Walsh J.E., Chapman W.L. 20thcentury sea-ice variations from observational data. Eds: M.O. Jeffries, H. Eicken. Annals of Glaciology. 2001, 33: 444–448.
58. Meinshausen M., Smith S.J., Calvin K., Daniel J.S., Kainuma M.L.T., Lamarque J.F., MatsumotoK., Montzka S.A., Raper S.C.B., Riahi K., Thomson A., Velders G.J.M., van Vuuren D.P. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change. 2011, 109: 213–241. doi: 10.1007/s10584-011-0156-z.
59. Cavalieri D.J., Parkinson C.L. Arctic sea ice variability and trends, 1979–2010 // Cryosphere. 2012, 6: 881–889. doi: 10.5194/tc-6-881-2012
60. Granger C.H.J., Hatanaka M. Spectral analysis of economic time series. NJ: University Press Princeton, 1964.
61. Lenton T.M., Held H., Kriegler E., Hall J.W., Lucht W., Rahmstorf S., Schellnhuber H.J. Tipping elements in the Earth's climate system. Proc. of the National Academy of Sciences of the United States of America. 2008, 105: 1786–1793. doi: 10.1073/pnas.0705414105.
62. Petoukhov V., Semenov V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. Journ. of Geophys. Research. 2010, 115 (D21111): 1–11. doi: 10.1029/2009JD013568.
63. Semenov V.A., Latif M. Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environ. Research Letters. 2015, 10: 054020. doi: 10.1088/1748-9326/10/5/054020.
64. Mysak L.A., Venegas S.A. Decadal climate oscillations in the Arctic: A new feedback loop for atmosphere-iceocean interactions. Geophys. Research Letters. 1998, 25: 3607–3610.
65. Karlsson J., Svensson G. Consequences of poor representation of Arctic sea-ice albedo and cloud-radiation interactions in the CMIP5 model ensemble. Geophys. Research Letters. 2013, 40: 4374–4379. doi: 10.1002/grl.50768.
66. Koenigk T., Devasthale A., Karlsson K.G. Summer Arctic sea ice albedo in CMIP5 models. Atmosphere Chemical Physics. 2014, 14: 1987–1998.
67. Zhang X. Sensitivity of arctic summer sea ice coverage to global warming forcing: towards reducing uncertainty in arctic climate change projections. Tellus Series a-Dynamic Meteorology and Oceanography. 2010, 62: 220–227. doi: 10.1111/j.1600-0870.2010.00441.x.
68. Mahlstein I., Knutti R. September Arctic sea ice predicted to disappear near 2 degrees C global warming above present. Journ. of Geophys. Research – Atmospheres. 2011, 117: D06104. doi: 10.1029/2011jd016709.
69. Goosse H., Arzel O., Bitz C.M., de Montety A., Vancoppenolle M. Increased variability of the Arctic summer ice area in a warmer climate. Geophys. Research Letters. 2009, 36: L23702. doi:10. 1029/2009GL040546.
70. Hurrell J.W. Decadal trends in the North-Atlantic Oscillation – Regional temperatures and precipitation. Science. 1995, 269: 676–679.
71. Kuzmina S.I., Bengtsson L., Johannessen O.M., Drange H., Bobylev L., Miles M.W. The North Atlantic Oscillation and greenhouse-gas forcing. Geophys. Research Letters. 2005, 32: L04703. doi: 10.1029/2004gl021064.
72. Peings Y., Magnusdottir G. Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environmental Research Letters. 2014, 9: 034018. doi: 10.1088/1748-9326/9/3/034018.
73. Wunsch C. The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. of the American Meteorol. Society. 1999, 80: 245–255. doi: 10.1175/1520-0477(1999)080<0245:tioscr>2.0.co;2.
74. Semenov V.A., Latif M., Jungclaus J.H., Park W. Is the observed NAO variability during the instrumental record unusual? // Geophys. Research Letters. 2008, 35: L11701. doi: 10.1029/2008gl033273.
75. Semenov V.A., Latif M., Dommenget D., Keenlyside N.S., Strehz A., Martin T., Park W. The impact of North Atlantic–Arctic multidecadal variability on Northern Hemisphere surface air temperature. Journ. of Climate. 2010, 23: 5668–5677. doi: 10.1175/2010jcli3347.1.
Supplementary files
For citation: Semenov V.A., Martin T., Behrens L.K., Latif M., Astafieva E.S. Arctic sea ice area changes in CMIP3 and CMIP5 climate models’ ensembles. Ice and Snow. 2017;57(1):77-107. https://doi.org/10.15356/2076-6734-2017-1-77-107
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)