Calculating of snow cover characteristics on a plain territory using the model SPONSOR and data of reanalyses (by the example of Moscow region)


https://doi.org/10.15356/2076-6734-2016-3-369-380

Full Text:




Abstract

The technique for calculating the snow cover characteristics (a water equivalent and a snow cover thickness) with high spatial and time resolution on spacious plains is proposed. The model SPONSOR of local heat- and moisture exchange (Land-Surface Model, LSM) and data of reanalyses NCEP/DOE and ECMWF ERA-Interim were used for calculations. The above characteristics of the snow cover on the test area of the Moscow region were calculated using this method over the period 1979–1996. The results were compared with actual data of the snow gauge stations and with data on snow cover, derived directly from reanalysis. The data from the NCEP/DOE reanalysis did not show satisfactory agreement with data of the observations for both the water equivalent and the thickness (Fig.  1,  б and Fig. 2, б): deviations reached 60–70%. Monthly mean values of snow water equivalent from the ERA-Interim reanalysis were in a good agreement with the observations, but the snow thicknesses were reproduced much worse. At the same time, using the LSM SPONSOR with input meteorological data from the reanalyses allowed obtaining the snow cover characteristics which were in a good agreement with data of the observations for both the monthly means and individual daily values. The correlation coefficients with the data of snow gauge surveys increased, on the average, up to 0.83–0.89 for the water equivalent, and up to 0.85–0.91 for the snow depth (see the Тable in the text). Especially good results were obtained when meteorological data from the ERA-Interim reanalysis were used together with the LSM SPONSOR (Fig. 1, д and Fig. 2, д). It allows us to conclude that meteorological data from the ERA-Interim reanalysis together with data of regular observational network can be used as an additional source of information for calculations of the snow characteristics. This conclusion is especially important for areas with sparse network of regular observations.

About the Authors

D. V. Turkov
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


V. S. Sokratov
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Kuzmin P.P. Fizicheskie svoystva snezhnogo pokrova. Physical properties of the snow cover. Leningrad: Hydrometeoizdat, 1957: 179 p. [In Russian].

2. Snow and Climate. Ed. by R.L. Armstrong, E. Brun. Cambridge University Press, 2008: 222 p.

3. Vavrus S. The role of terrestrial snow cover in the climate system. Climate Dynamics. 2007, 29: 73–88.

4. IPCC, 2013: Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: 3–29. doi:10.1017/CBO9781107415324.004.

5. Popova V.V., Morozova P.A., Titkova T.B., Semenov V.A., Cherenkova E.A., Shiryaeva A.V., Kitaev L.M. Regional features of present winter snow accumulation variability in the North Eurasia from data of observations, reanalysis and satellites. Led i Sneg. Ice and Snow. 2015, 55 (4): 73–86. doi:10.15356/2076-6734-2015-4-73-8. [In Russian]

6. Barnett T.P., Adam J.C., Lettenmaier D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature. 2005, 438: 303–309.

7. Bulygina O.N., Groysman P.Ya., Razuvaev V.N., Korshunova N.N. Changes in snow cover characteristics over Northern Eurasia since 1966. Environment Research Letters. 2011, 6: 045204. doi:10.1088/1748-9326/6/4/045204

8. Kislov A.V., Kitaev L.M., Konstantinov I.S. Statistical structure of large-scale properties of field of the snow cover. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2001, 8: 98–104. [In Russian].

9. Kitaev L.M., Titkova T.B. Estimation of snow storage using satellite information. Kriosfera Zemli. Earth Cryosphere. 2010, 14 (1): 76–80. [In Russian].

10. Telegina A.A., Frolova N.L., Kitaev L.M., Titkova T.B. Estimation of precision of snow storage satellite data for large watersheds of European Russia. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. Current problems in remote sensing of the Earth from space. 2014, 11 (2): 38–49. [In Russian]

11. Guseva E.V., Golubev V.N. Mathematical model of formation of structure and properties of snow cover // Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1989, 68: 18–25. [In Russian].

12. Fierz C., Lehning M. Assessment of the microstructure-based snow-cover model SNOWPACK: thermal and mechanical properties. Cold Regions Science and Technology. 2001, 33 (2–3): 123–131.

13. Volodina E.E., Bengtsson L., Lykosov V.N. Parameterization of moisture and heat transfer processes in the snow cover for modeling the seasonal variations of the land hydrological cycle. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2000, 5: 16–28. [In Russian]

14. Gelfan A.N., Moreido V.M. Dynamic-stochastic modeling of snow cover formation on the European territory of Russia. Led i Sneg. Ice and Snow. 2014, 54 (2): 44–52. doi:10.15356/2076-6734-2014-2-44-52. [In Russian].

15. Gusev Ye.M., Nasonova O.N. Modeling Heat and Water Exchange between the Land Surface and the Atmosphere. Moscow: Nauka, 2010: 328 p. [In Russian].

16. Gusev E.M., Nasonova O.N., Dzhogan L.Ya., Aizel G.V. Modeling of the formation of river runoff and snow cover in the North of Western Siberia. Vodnye resursy. Water Resources. 2015, 42 (4): 387–395. [In Russian]

17. Brun E., Voinnet V., Boone A., Decharme B., Peyngs Y., Valette R., Karbou F., Morin S. Simulation of Northern Eurasian local snow depth, mass, and density using a detailed snowpack model and meteorological reanalyses. Journ. of Hydrometeorology. 2013, 14: 203–219.

18. Essery R.L.H. Seasonal snow cover and climate change in the Hadley Center GCM. Annals of Glaciology. 1997, 25: 362–366.

19. Shmakin A.B. The updated version of SPONSOR land surface scheme: PILPS-influenced improvements. Global and Planetary Change. 1998. 19, 1–4: 49–62.

20. Slater A.G., Schlosser C.A., Desborough C.E. The representation of snow in land surface schemes: results from PILPS 2(d). Journ. of Hydrometeorology. 2001, 2 (1): 7–25.

21. Rutter N., Essery R., Pomeroy J., Altimir N., Andreadis K., Baker I., Barr A., Bartlett P., Boone A., Deng H., Douville H., Dutra E., Elder K., Ellis C., Feng X., Gelfan A., Goodbody A., Gusev Y., Gustafsson D., Hellstrom R., Hirabayashi Y., Hirota T., Jonas T., Koren V., Kuragina A., Lettenmaier D., Li W.‑P., Luce C., Martin E., Nasonova O., Pumpanen J., Pyles R.D., Samuelsson P., Sandells M., Schadler G., Shmakin A., Smirnova T.G., Stahli M., Stockli R., Strasser U., Su H., Suzuki K., Takata K., Tanaka K., Thompson E., Vesala T., Viterbo P., Wiltshire A., Xia K., Xue Y., Yamazaki T. Evaluation of forest snow processes models (Snow-MIP2). Journ. of Geophys. Research. 2009, 114: D06111. doi:10.1029/2008JD011063.

22. Etchevers P., Martin E., Brown R. Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project). Annals of Glaciology. 2004, 38: 150–158.

23. Shmakin A.B., Rubinshtein K.G. Validation of the dynamical-statistical method of detailsation of meteorological parameters. Trudy Gidrometeotcentra Rossii. Proc. of the Hydrometcentre of Russia. 2006, 341: 186–208. [In Russian]

24. Shmakin A.B., Turkov D.V., Mikhailov A.Yu. Model of snow cover considering its layered structure and seasonal evolution. Kriosfera Zemli. Earth Cryosphere. 2009, 13 (4): 69–79. [In Russian]

25. Dyunin A.K. Mekhanika meteley. Mechanics of blizzards. Novosibirsk: Siberian Branch of the USSR Academy of Sciences, 1963: 378 p. [In Russian].

26. Kominami Y., Endo Y., Niwano Sh., Ushioda S. Viscous compression model for estimating the depth of new snow. Annals of Glaciology. 1998, 26: 77–82.

27. Krass M.S., Merzlikin V.G. Radiation thermophysics of snow and ice. Leningrad: Hydrometeoizdat, 1990: 262 p. [In Russian].

28. Glendinning J.H.G., Morris E.M. Incorporation of spectral and directional radiative transfer in a snow model. Hydrological Processes. 1999, 13: 1761–1772.

29. http://www.ecmwf.int.

30. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge‑Sanz B.M., Morcrette J.‑J., Park B.‑K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.‑N., Vitart F. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Society. 2011, 137: 553–597. doi: 10.1002/qj.828

31. NCEP_Reanalysis 2 dataprovided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/

32. Kanamitsu M., Ebisuzaki W., Woollen J., Yang S‑K, Hnilo J.J., Fiorino M., Potter G. L. NCEP-DOE AMIP-II Reanalysis (R2). Bulletin of the American Meteorological Society. November 2002: 1631–1643.

33. Drusch M., Vasiljevic D., Viterbo P. ECMWF’s global snow analysis: Assessment and revision based on satellite observations. Journ. of Applied Meteorology. 2004, 43: 1282–1294.


Supplementary files

For citation: Turkov D.V., Sokratov V.S. Calculating of snow cover characteristics on a plain territory using the model SPONSOR and data of reanalyses (by the example of Moscow region). Ice and Snow. 2016;56(3):369-380. https://doi.org/10.15356/2076-6734-2016-3-369-380

Views: 1628

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)