Physical simulation of glacier motion modes
https://doi.org/10.15356/2076-6734-2016-3-333-344
Abstract
About the Author
V. P. EpifanovRussian Federation
Moscow
References
1. Gow A.J., Veesse D. Physical properties, crystalline textures and c-axis fabrics of the Siple Dome (Antarctica) ice core. Journ. of Glaciology. 2007, 53 (83): 573–584.
2. Epifanov V.P., Glazovsky A.F., Osokin N.I. Physical modeling of glacier contact with the bed. Led i Sneg. Ice and Snow. 2013, 1 (121): 43–52. [In Russian].
3. Valiev R.Z., Alexanderov I.V. Nanostrukturnye materialy, poluchennye intensivnoy plasticheskoy deformatciey. Nanostructured materials produced by severe plastic deformation. Moscow: Logos, 2000: 272 p. [In Russian].
4. Storogev M.V., Popov M.V. Teoriya obrabotki metallov davleniem. Theory of processing of metals by pressure. Моscow: Mashinostroenie, 1971: 424 p. [In Russian].
5. Epifanov V.P. Destruction of polycrystalline ice. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 1982, 267 (6): 1364–1367. [In Russian].
6. Epifanov V.P. The use of acoustic methods in the study of snow cover. Kriosfera Zemli. Earth's Cryosphere. 2014, 18 (3): 101–113. [In Russian].
7. Epifanov V.P., Glazovsky A.F. Acoustic characteristics as an indicator of the specifics of ice movement in glaciers. Kriosfera Zemli. Earth's Cryosphere. 2010, 14 (4): 42–55. [In Russian].
8. Epifanov V.P., Glazovsky A.F. The study of glaciers based on acoustic measurements. Led i Sneg. Ice and Snow. 2013, 3 (123): 12–19. [In Russian].
9. Eshelby J. Kontinualnaya teoriya dislokatsiy. The continuum theory of dislocations. Moscow: Foreign Literature, 1963: 248 p. [In Russian].
10. Epifanov V.P. Mechanics and strength of freshwater ice. Materialy glyatsiologicheskich issledovaniy. Data of Glaciological Studies. 2005, 98: 56–64. [In Russian].
11. Lyyra M., Jantti M., Launiainen J. Adhesive strength of spray accreted ice on materials and coatings. Intern. Offshore and Navigation Conf. and Exhibition. ESPOO. 1986: 484–496.
12. Kanazawa S., Arakawa M., Maeno N. Measurement of snow and ice friction at low sliding velocities. Seppyo. Journ. of the Japanese Society of Snow and Ice. 2003, 65: 389–398.
13. Meuler A.J., Smith J.D., Varanasi K.K., Mabry J.M., McKinley G.H., Cohen R.E. Relationships between water wettability and ice adhesion. Applied Materials Interfaces. American Chemical Society. 2010, 2 (11): 3100–3110.
14. Epifanov V.P., Savatiugin L.M. Effect of obstacles on glacier movement on bedrock. Problemy Arktiki i Antarktiki. Problems of the Arctic and Antarctic. 2013, 96 (2): 55–66. [In Russian].
15. Beeman M., Durham W.B., Kirby S.H. Friction of ice. Journ. of Geophys. Research Letters. 1988, 93: 7625–7633.
16. Hamel G. Spiralevidnye dvigheniya vyazkoy ghidkosti. Nelineynaya Dinamika. 2009, 5 (1): 111–133. Spiralförmige Bewegungen zäher Flüssigkeiten. Journal-Ber. Deutsch. Math. Verein. 1917, 25: 34–60. http://mi.mathnet.ru/nd83.
17. Epifanov V.P. Modeling of crystallization processes in the basal layers of the glaciers. Kriosfera Zemli. Earth's Cryosphere. 2015, 19 (3): 20–31. [In Russian].
18. Zimmerman R., Pimental G.C. The infrared spectrum of ice; temperature dependence of the hydrogen bond potential function. In: Advances in Molecular Spectroscopy. V. 2. Ed. MacMillan. N.‑Y.: Pergamon, Oxford. 1962: 726–737
Supplementary files
For citation: Epifanov V.P. Physical simulation of glacier motion modes. Ice and Snow. 2016;56(3):333-344. https://doi.org/10.15356/2076-6734-2016-3-333-344
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)