Influence of the Scandinavian ice on the climate conditions of east plain European evidenced from the numerical simulation project PMIP II


https://doi.org/10.15356/2076-6734-2014-1-113-124

Full Text:




Abstract

In this paper results of climate simulation in East-European Plain (EEP) by coupled climate models (which take part in project PMIP II (Paleoclimate Modeling Intercomparison Project)) are tested for different climatic periods (pre-industrial, Last Glacial Maximum (LGM)). The main parameters for comparison were: temperature, precipitations, evaporation and the Volga runoff. As a result, the model CNRM (Centre National de Recherches Meteorologie, France) was chosen as the best for this territory for pre-industrial climate. Its results were used to calculate runoff of the Volga river during the LGM and modern climate. «Climatic» component of the Volga runoff was calculated as the difference between precipitation and evaporation in the watershed. The «climatic» part of the Volga runoff 21 kyr decreased by 30% compared with the modern (according to model CNRM). The main reason for the low values of «climatic» runoff was a reduction of precipitation on the territory of Volga watershed. The decrease of evaporation could not compensate for the deficit of precipitation. However, according to paleoreconstructions and the results of PMIP II simulation, a significant change to the hydrological regime of the Volga River (21 kyr BP) could be due to the contribution of melt water (about 384 km³/year). This means that to «climatic» component of runoff (about 78 km³/year), one has to add volume of the melt water of the Scandinavian ice sheet, which within the territory of Volga watershed. The results were used to assess the level of the Caspian Sea during this period (changes in the Caspian sea level compared with modern was about 48 meters. 


About the Author

P. A. Morozova
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


References

1. Varushchenko S.I., Varushchenko A.N., Klige R.K. Izmenenie regima Kaspiyskogo moray i besstochnykh vodoemov v paleovremeni. Changes of regime of Caspian Sea and closed water reservoirs in palaeotime. Moscow: Nauka, 1987: 255 p. [In Russian].

2. Velichko A.A. Correlation of climate changes in the high and low latitudes of the Earth in the Late Pleistocene and Holocene. Paleoklimaty i oledeneniya v pleistotsene. Moscow: Nauka, 1989: 5–19. [In Russian].

3. Velichko A.A.Paleoklimaty i paleolandshafty vnetropicheskogo prostranstva Severnogo polushariya. Atlas-monografiya. Paleoclimates and paleolandscapes of non-tropical area of the Northern Hemisphere. Atlas-monograph. Moscow: GEOS, 2009: 119 p. [In Russian].

4. Grosswald M.G. Evraziyskie gidrosfernye katastrofy i oledenenie Arktiki. Eurasian hydrosphere catastrophes and Arctic glaciation. Moscow: Nauchnyi mir. Scientific World, 1999: 118 p. [In Russian].

5. Evstigneev V.M. Prakticheskie raboty po kursu “Rechnoy stok i gidrologicheskie raschety”. Practical works on course “River runoff and hydrological calculations”. Moscow State University, 1991: 69 p. [In Russian].

6. Isaev A.A. Atmosfernye osadki. Atmospheric precipitation. Pt. I. Changeability of the precipitation characteristics on the territory of Russia and adjacent countries. Moscow State University, 2002: 192 p. [In Russian].

7. Kalinin G.P., Klige R.K., Shleynikov V.A. Main problems of paleohydrology. Problemy paleogidrologii. Problemc of paleohydrology. Moscow: Nauka, 1976: 7–20. [In Russian].

8. Kvasov D.D. Pozdnechetvertichnaya istoriya krupnykh ozer i vnutrennikh morey Vostochnoy Evropy. Late Pleistocene history of large lakes and internal seas in the Eastern Europe. Leningrad: Nauka, 1975: 278 p. [In Russian].

9. Kislov A.V., Toropov P.A. Modeling of climatic conditions in the East-European Plain and variations of Volga river runoff in the epoch of Late Pleistocene cooling. Vestnik MGU. Ser. 5. Geografiya. Herald of the Moscow State University. Ser. 5. Geography. 2006, 2: 13–17. [In Russian].

10. Klige R.K., Danilov I.D., Konishchev V.N. Istoriya gidrosfery. History of hydrosphere. Moscow: Nauchnyi mir. Scientific World, 1998: 370 p. [In Russian].

11. Kuzmin P.P. Protsess tayaniya snezhnogo pokrova. Process of snow cover melting. Leningrad: Gidrometeoizdat. Leningrad: Hydrometeoizdat, 1961: 346 p. [In Russian].

12. Markov K.K., Lazukov G.I., Nikolaev V.A. Chetvertichnyi period (Lednikovyi period – Antropogenovyi period). Quaternary period (Glacier age – Anthropogenic period). V. 1. Moscow State University, 1965: 371 p. [In Russian].

13. Metodicheskie ukazaniya k chetvertoy chaste Spravochnika po klimatu SSSR. Methods directions to the fourth part of Reference-book on USSR climate. Section 2. “Atmospheric precipitation”. JL: Rotaprint, 1966: 40 p. [In Russian].

14. Official site PCMDI. URL: http://www-pcmdi.llnl.gov/ (date of address 01.06.2013)

15. Official site PMIP2. URL: http://pmip2.lsce.ipsl.fr/ (data of address 01.06.2013)

16. Svitoch A.A. Level regime of Caspian Sea according to paleogeographical data. Vodnye resursy. Water Resources. 1997, 24: 13–22. [In Russian].

17. Toropov P.A. Verification results of numerical modeling of East-European Plain climate. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2005, 5: 5–21. [In Russian].

18. Toropov P.A., Morozova P.A. Estimation of Caspian Sea level in the epoch of Late Pleistocene cryochrone on the base of results of climate numerical modeling taking into account the melting of Scandinavian Glacier. Vestnik MGU. Ser. 5. Geografiya. Herald of the Moscow State University. Ser. 5. Geography. 2011, 2: 55–61. [In Russian].

19. Kislov A.V., Toropov P.A. Simulation of Black Sea and Caspian Sea responses to Quaternary climate scenarios. Geography. Environment. Sustainability. 2008, 1: 68–79.

20. Laîné A., Kageyama M., Salas-Mélia D., Voldoire A., Rivière G., Ramstein G., Planton S., Tyteca S., Peterschmitt J.Y. Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation. Climate Dynamics. 2009, 32 (5): 593–614.

21. Peltier W.R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences. 2004, 32: 111–149.

22. Svendsen J.I, Alexanderson Н., Astakhov V.I. , Demidov I., Dowdeswell J.A., Funder S., Gataullin V., Henriksen M., Hjort C., Houmark-Nielsen M., Hubberten H.W., Ingolfsson O., Jakobsson M., Kjer K.H., Larsen E., Lokrantz H., Lunkka J.P., Lysa A., Mangerud J., Matiouchkov A., Murray A., Moller P., Niessen F., Nikolskaya O., Polyak L., Saarnisto M., Siegert C., Siegert M.J., Spielhagen R.F., Stein R. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews. 2004 (23): 1229–1271.

23. Tarasov P.E., Harrison S.P. Lake status records from the former Soviet Union and Mongolia: a continental-scale synthesis. Palaeohydrology as Reflected in Lake Level Changes as Climatic Evidence for Holocene Times. Gustav Fischer–Verlag, Stuttgart, 1998: 115–130.


Supplementary files

For citation: Morozova P.A. Influence of the Scandinavian ice on the climate conditions of east plain European evidenced from the numerical simulation project PMIP II. Ice and Snow. 2014;54(1):113-124. https://doi.org/10.15356/2076-6734-2014-1-113-124

Views: 1081

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)