Estimation of the permafrost stability on the East Arctic shelf under the extreme climate warming scenario for the XXI century


https://doi.org/10.15356/2076-6734-2016-1-61-72

Full Text:




Abstract

A state of permafrost in the Arctic is the key to understanding whether methane, stored in the permafrost related gas hydrate, can release into the atmosphere. The global warming can lead to destabilization of the submarine permafrost and, thus, cause the methane releasing into the water. The near-bottom water temperature plays a significant role in the current state of the submarine permafrost, because it specifies a depth of thawing of the permafrost. We have numerically simulated evolution of the submarine permafrost on the East Siberia Arctic shelf for the last glacial cycle. In order to estimate a possible state and stability of the submarine permafrost we did carry out a numerical run based on the ICMMG SB RAS the coupled ocean-ice and submarine permafrost model. For the atmosphere forcing, the GFDL CM3 coupled climate model output, simulated under the scenario RCP8.5, was used. The scenario RCP8.5 was used since it predicted the strongest warming by the end of the 21-st century. The GFDL СM3 model, predicting the most pronounced Arctic warming, was also used in order to put the tentative upper boundary on the submarine permafrost degradation in this century.

The results obtained show that the offshore permafrost exists across the vast East Siberia shelf. This permafrost occurs continuously but its thickness changes. Thickness of the permafrost within the most part of the East Siberia shelf is estimated 470–590 m when the value of 60 W/m2 was used for the geothermal flux. Our results reveal a certain rising of the bottom layer temperature on the shelf and subsequent penetration of a heat flux into the sediments. However, our results show that even the extreme warming is not sufficient to destabilize the submarine permafrost on the shelf of both, the Laptev Sea and the East Siberian Sea. By the end of the 21st century, upper boundary of the permafrost deepens by value from 1 to 11 m only due to the thermal effects, and by 5–10 m in addition if we take into account the salinity of sediments. However, the depth of the permafrost upper boundary is still smaller than that of the hydrate stability zone. The thickness of the methane hydrate stability zone on the shelf is estimated 770–870 m. Moreover, upper boundary of this zone occurs at a depth of 120–220 m below the sea bottom, which makes the gas hydrates be isolated from the seabed surface by the permafrost layer. The submarine permafrost functions as an impermeable lid and prevents the methane from destroyed gas hydrates.


About the Authors

V. V. Malakhova
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of RAS
Russian Federation
Novosibirsk


E. N. Golubeva
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Анисимов О.А., Борзенкова И.И., Лавров С.А., Стрельченко Ю.Г. Современная динамика подводной мерзлоты и эмиссия метана на шельфе морей Восточной Арктики // Лёд и Снег. 2012. № 2 (118). С. 97–105.

2. Арэ Ф.Э. Теплофизические аспекты принципа Цытовича о равновесном состоянии воды и льда в мерзлых грунтах // Криосфера Земли. 2014. Т. XVIII. № 1. С. 47–56.

3. Гаврилов А.В., Романовский Н.Н., Хуббертен Х.-В. Палеогеографический сценарий послеледниковой трансгрессии на шельфе моря Лаптевых // Криосфера Земли. 2006. Т. X. № 1. С. 39–50.

4. Голубева Е.Н., Платов Г.А. Численное моделирование отклика Арктической системы океан-лед на вариации атмосферной циркуляции 1948–2007 гг. // Изв. РАН. Физика атмосферы и океана. 2009. Т. 45. № 1. С. 145–160.

5. Голубева Е.Н., Платов Г.А., Якшина Д.Ф. Численное моделирование современного состояния вод и морского льда Северного Ледовитого океана // Лёд и Снег. 2015. № 2 (130). C. 81–92.

6. Григорьев М.Н. Морфология и динамика преобразования подводной мерзлоты в прибрежно-шельфовой зоне морей Лаптевых и Восточно-Сибирского // Наука и образование. 2006. № 4. С. 104–109.

7. Денисов С.Н., Аржанов М.М., Елисеев А.В., Мохов И.И. Оценка отклика субаквальных залежей метангидратов на возможные изменения климата в XXI веке // ДАН. 2011. Т. 441. №5. С. 685–688.

8. Кузин В.И., Платов Г.А., Голубева Е.Н., Малахова В.В. О некоторых результатах численного моделирования процессов в Северном Ледовитом океане // Изв. РАН. Физика атмосферы и океана. 2012. Т. 48. № 1. С. 117–136.

9. Малахова В.В., Голубева Е.Н. О возможной эмиссии метана на шельфе морей Восточной Арктики // Оптика атмосферы и океана. 2013. Т. 26. №6. С. 452–458.

10. Разумов С.О., Спектор В.Б., Григорьев М.Н. Модель позднекайнозойской эволюции криолитозоны шельфа западной части моря Лаптевых // Океанология. 2014. Т. 54. № 5. С. 679–693. doi: 10.7868/S0030157414040091.

11. Романовский Н.Н., Тумской В.Е. Ретроспективный подход к оценке современного распространения и строения шельфовой криолитозоны восточной Арктики // Криосфера Земли. 2011. Т. XV. №1. С. 3–14.

12. Фартышев А.И. Особенности прибрежно-шельфовой криолитозоны моря Лаптевых. Новосибирск: Наука, 1993. 136 с.

13. Чувилин Е.М., Буханов Б.А., Тумской В.Е., Шахова Н.Е., Дударев О.В., Семилетов И.П. Теплопроводность донных отложений в районе губы Буор-Хая (шельф моря Лаптевых) // Криосфера Земли. 2013. Т. XVII. № 2. С. 32–40.

14. Шполянская Н.А. Мерзлотно-экологическая характеристика западного сектора Российского Арктического шельфа // Изв. Коми науч. центра УрО РАН. 2014. Вып. 3. № 19. С. 105–111.

15. Bauch H.A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V.V. Chronology of the Holocene transgression at the North Siberian margin // Global Planetary Change. 2001. V. 31. P. 125–139. doi:10.1016/S0921-8181(01) 00116-3.

16. Buffet B., Archer D. Global inventory of methane clathrate: sensivity to changes in the deep ocean // Earth and Planetary Science Letters. 2004. V. 227. P. 185–199. doi:10.1016/j.epsl.2004.09.005.

17. Delisle G. Temporal variability of sub-sea permafrost and gas hydrate occurrences as function of climate change in the Laptev Sea, Siberia // Polarforchung. 2000. V. 68. P. 221–225.

18. Dmitrenko I., Kirillov S., Tremblay L., Kassens H., Anisimov O., Lavrov S., Razumov S., Grigoriev M. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability // Journ. of Geophys. Research. 2011. V. 116. C10027. doi:10.1029/2011JC007218.

19. Kholodov A.L., Romanovskii N.N., Gavrilov A.V., Tipenko G.S., Drachev S.S., Hubberten H.W., Kassens H. Modeling of the Offshore Permafrost Thickness on the Laptev Sea Shelf // Polarforschung. 2001. V. 69. P. 221–227.

20. Moridis G.J. Numerical studies of gas production from methane hydrates // Society of Petroleum Engineers Journal. 2003. V. 32. № 8. P. 359–370.

21. Moridis G.J., Kowalsky M.B., Pruess K. Users manual: a numerical simulator for modeling the behavior of hydrates in geologic media, HydrateResSim. Department of Energy, Contract No. DE-AC03-76SF00098. Lawrence Berkeley National Laboratory, Berkeley, CA. 2005. 285 p.

22. Nicolsky D.J., Romanovsky V.E., Romanovskii N.N., Kholodov A.L., Shakhova N.E., Semiletov I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region // Journ. of Geophys. Research. 2012. V. 117. F03028. doi:10.1029/2012JF002358.

23. Petit J., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica // Nature. 1999. V. 399. P. 429–436.

24. Pithan F., Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models // Nature Geoscience. 2014. V. 7. P. 181–184. doi: 10.1038/NGEO2071.

25. Portnov A., Mienert J., Serov P. Modeling the evolution of climate-sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf // Journ. of Geophys. Research. Biogeoscience. 2014. V. 119. P. 2082–2094. doi:10.1002/2014JG002685.

26. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas // Geo-Mar. Letters. 2005. V. 25. P. 167–182. doi:10.1007/s00367-004-0198-6.

27. Shakhova N., Semiletov I., Leifer I., Rekant P., Salyuk A., Kosmach D. Geochemical and geophysical evidence of methane release from the inner East Siberian Shelf // Journ. of Geophys. Research. 2010. V. 115. C08007. doi:10.1029/2009JC005602.

28. http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml The NCEP/NCAR Reanalysis Project at the NOAA/ESRL Physical Sciences Division [Электронный ресурс]

29. http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp GFDL Data Portal – NOAA [Электронный ресурс]


Supplementary files

For citation: Malakhova V.V., Golubeva E.N. Estimation of the permafrost stability on the East Arctic shelf under the extreme climate warming scenario for the XXI century Ice and Snow. 2016;56(1):61-72. https://doi.org/10.15356/2076-6734-2016-1-61-72

Views: 1586

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)