THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS


https://doi.org/10.15356/2076-6734-2012-2-97-105


Abstract

We study the methane emission over the East Siberian Arctic Shelf (ESAS) under the changing sub-aquatic permafrost conditions from the time of inundation 9–6 thousand years BP to present and further until the end of the millennium. The study is based on the full-physics model of hydrothermal regime of soil. Our results indicate that the current elevated methane emission from ESAS is responsible for 0.01 ºС global air temperature rise. Even under the hypothetic climate scenario that overestimates the range of near-bottom water temperature rise, projected by the end of the millennium thawing of the bottom sediments is likely to be about90 mand will thus not reach the upper limit of the methane hydrate stability zone that is located 100–140 munderneath the sea bottom. The results of the study do not support the so called «methane bomb» hypothesis that is widely discussed in the scientific literature and in the media.


About the Authors

O. A. Anisimov
Государственный гидрологический институт, Санкт-Петербург
Russian Federation


I. I. Borzenkova
State Hydrological Institute, St.-Petersburg
Russian Federation


S. A. Lavrov
State Hydrological Institute, St.-Petersburg
Russian Federation


Yu. G. Strel’chenko
State Hydrological Institute, St.-Petersburg
Russian Federation


References

1. Andreev A.A., Klimanov V.A. Vegetation and climate of lower course of Yana river in Holocene. Izvestiya Ross. Akad. Nauk, Seriya Geogr. Proc. of the RAS, Geographical Series. 2000, 1: 88–93. [In Russian].

2. Anisimov O.A., Lavrov S.A., Reneva S.A. Emission of methane from long-term freezing swamps of Russia in the conditions of climate changing. Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem. Problems of ecological modeling and monitoring of ecosystems. St.-Petersburg: Hydrometeoizdat, 2005: 124–142. [In Russian].

3. Arzhanov M.M., Eliseev A.V., Demchenko P.F., Mokhov I.I., Khon V. Modeling of temperature and hydrological regime of the Siberian rivers catchments in the conditions of permafrost using data of reanalysis. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of Russian Academy of Sciences. Physics of Atmosphere and Ocean. 2008, 44 (1): 86–93. [In Russian].

4. Borzenkova I.I. IOzmenenie klimata v kaynozoe. Climate changes in Cenozoic. St.-Petersburg: Hydrometeoizdat, 1992: 247 p. [In Russian].

5. Denisov S.N., Arzhanov M.M., Eliseev A.V., Mokhov I.I. Evaluation of response of subaqual methane hydrates deposits to the possible climate changes in 21st century. Doklady Akademii nauk. Proc. of the Russian Academy of Sciences. 2011, 441 (5): 1–4. [In Russian].

6. Kaplina T.N., Chekhovsky A.A. Rekonstruktsiya paleogeograficheskikh usloviy golotsenovogo klimaticheskogo optimuma na primorskikh nizmennostyakh Yakutii. Reconstruction of paleogeographic conditions of Holocene climatic optimum in seaside Yakutian plains. Magadan, 1987: 145–151. [In Russian].

7. Klimat i landshfty Severnoy Evrazii v usloviyakh global'nogo potepleniya. Retrospektivnyi analiz i stsenariy. Climate and landscapes of North Eurasia in the conditions of global changes. Retrospective analysis and scenario. Moscow: GEOS, 2010: 219 p. [In Russian].

8. Lavrov S.A., Anisivov O.A. Modeling of grounds hydrothermal regime: description of physical dynamic model and comparison of calculations with observation. Problemy ekologicheskogo modelirovaniya i monitoringa ekosistem. Problems of ecological modeling and monitoring of ecosystems. Moscow: Planeta, 2011: 22–41. [In Russian].

9. Laukhin S.A. Evolution of natural zonality in the North-East of Asia in Pleistocene. Doklady Akademii Nauk. Proc. of Russian Academy of Sciences. 1994, 338: 683–686. [In Russian].

10. Semenov S.M., Popov I.O. Comparative assessment of influence of changes in concentrations of carbon, methane, nitrous oxide and water vapor to the radiation-equilibrium temperature of Earth surface. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2011, 8: 34–43. [In Russian].

11. Semiletov I.P. Global warming and carbon cycle in Arctic. Vestnik DVO RAN. Herald of the Far East Branch, Russian Academy of Sciences. 1997, 4: 75–85. [In Russian].

12. Shakhova N.E., Semiletov I.P., Sergienko V.I., Salyuk A.N., Belcheva N.N., Kosmach D.A. Status of problem on the role of East-Siberian shelf in present-day cycle of methane. Izmenenie okruzhayushchey sredy i klimata. Changes of environment and climate: natural catastrophes. Moscow: Probel 2000, 2008: 164–176. [In Russian].

13. Shakhova N.E., Sergienko V.I., Semiletov I.P. Input of East-Siberian shelf in the modern cycle of methane. Vestnik RAN. Herald of the Russian Academy of Sciences. 2009, 79 (6): 507–518. [In Russian].

14. Shakhova N.E., Yusupov V.A., Salyuk A.N., Kosmach D.A. Semiletov I.P. Anthropogenic factor and methane emission at the East-Siberian shelf. Doklady Akademii Nauk. Proc. of the Russian Academy of Sciences. 2009, 429 (3): 398–401. [In Russian].

15. Anisimov O. Potential feedback of thawing permafrost to the global climate system through methane emission. Environmental Research Letters. 2007, 2. doi:10.1088/1748-9326/2/4/045016

16. Anisimov O.A., Reneva S.A. Permafrost and changing climate: the Russian perspective. Ambio. 2006, 35 (4): 169–175.

17. Bradley R.S. Climate forcing during the Holocene. Global changes in the Holocene approaches to reconstructing fine-resolution climate change. Eds. A.W. Mackay, R.W. Battarbee, H.J.B. Birks, F. Oldlield. London: Arnold, 2003: 10–19.

18. Brook E.L., Harder S., Severinghaus J., Steig E.J., Sucher C.M. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cycles. 2000, 15: 559–572.

19. Chappellaz J., Blunier T., Kints S., Dallenbach A., Barnola J.-M., Schwander J., Raynaud D., Stauffer B. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. Journ. of Geophys. Research. 1997, 102 (D13): 15987–15999.

20. Christensen T.R., Johansson T.R., Akerman H.J., Mastepanov M., Malmer N., Friborg T., Crill P., Svensson B.H. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys. Research Letters. 2004, 31. L04501. doi:10.1029/2003GL018680

21. Delisle G. Temporal variability of subsea permafrost and gas hydrate occurrences as function of climate change in the Laptev Sea, Siberia. Polarforschung. 2000, 6: 221–225.

22. Dmitrenko I.A., Kirillov S.A., Tremblay B., Kassens H., Anisimov O.A., Lavrov S.A., Razumov S.O., Grigoriev M.N. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. Journ. of Geophys. Research. 2011, 116. C10027. doi:10.1029/2011JC007218

23. Flückiger J., Monnin E., Stauffer B., Schwander J., Stocker T.F., Chappellaz J., Raynaud D., Barnola J.-M. High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochem. Cycles. 2002, 16 (1): 1010–1016.

24. Frenzel B., Pecsi M., Velichko A.A. Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere, Late Pleistocene – Holocene. Budapest. Frankfurt. N.Y.: Gustav Fisher Verlag, 1992: 153 p.

25. Friborg T., Soegaard H., Christensen T.R., Lloyd C.R., Panikov N.S. Siberian Wetlands: Where a sink is a source. Geophys. Research Letters. 2003, 30 (21): 2129.

26. Joos F., Spahni R. Rates of change in natural and anthropogenic radiative forcing over the last 20,000 years. Proc. of the National Academy of Sciences of the USA. 2008, 105: 1425–1430.

27. MacDonald G.M., Beilman D.W., Kremenetski C.V., Sheng Y., Smith L.C., Velichko A.A. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science. 2006, 314: 285–288.

28. Mix A.C., Bard E., Schneider R. Environmental processes of the Ice Age: Land, ocean, glaciers (EPILOG). Quaternary Science Reviews. 2001, 20: 627–657.

29. Monnin E., Steig E.J., Siegentaler U., Kawamura K., Schwander J., Stauffer B., Stocker T.F., Morse D.L., Barnola J.-M., Bellier B. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth and Planetary Science Letters. 2004, 224 (1/2): 45–54.

30. Nikolsky D., Shakhova N. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait. Environmental Research Letters. 2010, 5: 1–9.

31. Prather M., Ehhalt D. Atmospheric chemistry and greenhouse gases. Climate Change 2001: The Scientific Basis Contribution of Working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson. Cambridge: Cambridge University Press. 2001: 239–387.

32. Ramaswamy V. Radiative forcing of climate change. Climate Change 2001: The Scientific Basis Contribution of Working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Eds. J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson. Cambridge: Cambridge University Press. 2001: 349–416.

33. Romanovskii N.N., Hubberten H.W. Results of permafrost modeling of the lowlands and shelf of the Laptev Sea region, Russia. Permafrost and Periglacial Processes. 2001, 12 (2): 191–202.

34. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-mar. Letters. 2005, 25: 167–182.

35. Shakhova N., Semiletov I., Panteleev G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophys. Research Letters. 2005, 32 (9): 27–35.

36. Shakhova N., Semiletov I. Methane release and coastal environment in the East Siberian Arctic shelf. Journ. of Marine Systems. 2007, 66 (1–4): 227–243.

37. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science. 2010, 327: 1246–1250.

38. Tishchenko P., Hensen C., Wallmann K., Wong C.S. Calculation of the stability and solubility of methane hydrate in seawater. Chemical Geology. 2005, 219: 37–52.

39. Walter K.M., Zimov S.A., Chanton J.P., Verbyla D., Chapin I., F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature. 2006, 443 (7107): 71–75.

40. Weber S.L., Crowley Y.J., Van der Schrier G. Solar irradiance forcing of centennial climate variability during the Holocene. Climate Dynamics. 2004, 22: 539–553.

41. Walter K.M., Edwards M.E., Grosse G., Zimov S.A., Chapin III F. S. Thermokarst Lakes as a Source of Atmospheric CH4 During the Last Deglaciation. Science. 2007, 318 (5850): 633–636.


Supplementary files

For citation: Anisimov O.A., Borzenkova I.I., Lavrov S.A., Strel’chenko Y.G. THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS. Ice and Snow. 2012;52(2):97-105. https://doi.org/10.15356/2076-6734-2012-2-97-105

Views: 1108

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)