SNOW COVER OF THE CENTRAL ANTARCTICA (VOSTOK STATION) AS AN IDEAL NATURAL TABLET FOR COSMIC DUST COLLECTION: PRELIMINARY RESULTS ON THE IDENTIFICATION OF MICROMETEORITES OF CARBONACEOUS CHONDRITE TYPE
https://doi.org/10.15356/2076-6734-2012-4-146-152
Abstract
During the 2010/11 season nearby the Vostok station the 56th Russian Antarctic Expedition has collected surface snow in a big amount from a 3 m deep pit using 15 220 L vol. containers (about 70 kg snow each). Snow melting and processing by ultra-centrifugation was performed in a clean (class 10 000 and 100) laboratory. Total dust concentrations were not exceeded 37.4 mkg per liter with particle dispersal mode around 2.5 mkm. To analyze the elemental composition of fine dust particles aimed to reveal Antarctic micrometeorites (AMM) two electron microscopy devices equipped with different micro-beams were implemented. As a preliminary result, three particles (of 107 analyzed) featured by Mg content clearly dominated over Al along with Si and Fe as major elements (a feature of carbonaceous chondrites) were observed. By this the Vostok AMM CS11 collection was established. The occurrence of given particles was averaged 2.8% – the factual value obtained for the first time for chondritic type AMM at Vostok which should be considered as the lowest estimate for all other families of AMM. Given the reference profile of total dust content in East Antarctic snow during Holocene (18 mkg/kg) the MM deposition in Antarctica was quantified for the first time – 14 tons per day for carbonaceous chondrites for the Vostok AMM CS11 collection and up to 245 tons per day for all MM types for the Concordia AMM DC02 collection. The results obtained allowed to prove that snow cover (ice sheet in total) of Central East Antarctica is the best spot (most clean of other natural locations and always below 0 ºC) for collecting native MM deposited on the Earth during the last million years and could be useful in deciphering the origin and evolution of solid matter in our Solar System and its effects on Earth-bound biogeochemical and geophysical processes including the life origin. The farther analyses of the Vostok AMMs are in a progress.
About the Authors
E. S. BulatRussian Federation
V. A. Celmovich
Russian Federation
J.-R. Petit
France
I. M. Gindilis
Russian Federation
S. A. Bulat
Russian Federation
References
1. Astafieva M.M., Gerasimenko L.M., Geptner A.R., Zhegallo E.A., Zhmur S.I., Karpov G.A., Orleansky V.K., Ponomarenko A.G., Rozanov A.Yu., Sumina E.L., Ushatinskaya G.T., Khuver R., Shkol’nik E.L. Iskopaemye bakterii i drugie mikroorganizmy v zemnykh porodakh i astromaterialakh. Fossil bacteria and other microorganisms in the rocks and astronomical materials. Moscow: Paleontological Institute of RAS, 2011: 172 p. [In Russian].
2. Afanasiev V.L., Kalenichenko V.V., Karachentsev I.D. Discovery of intergalactic meteoric particle at the sixth telescope. Astrophifizicheskiy byulleten’. Astrophysical bulletin. 2007, 62 (4): 319–328. [In Russian].
3. Barkov N.I., Lipenkov V.Ya. Snow accumulation in the region of Vostok station, Antarctica, in 1970–1992. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1996, 80: 87–88. [In Russian].
4. Vilenskiy V.D. Spherical micro particles in the Antarctic Ice Sheet. Meteoritica. Meteoritics. 1972, 31: 57–61. [In Russian].
5. Grachev A.F., Korchagin O.A., Celmovich V.A., Kollmann X.A. Cosmic dust and micro meteorites in the transmission layer of clay at the border of Cretaceous and Palaeogene in the cross-section Gams (Eastern Alps): morphology and chemical composition. Fizika Zemli. Earth Physics. 2008, 7: 42–57. [In Russian].
6. Grinberg J.M. Interstellar dust. Structure and evolution. V mire nauki. In the scientific world. 1984, 8: 66–77. [In Russian].
7. Rozanov A.Yu. Pseudomorphoses at the microbes in meteorites. Problemy proiskhozhdeniya zhizni. Problems of the life origin. Moscow: Paleontological Institute of RAS, 2009: 158–165. [In Russian].
8. Celmovich V.A. New and perspective possibilities of micro sounding analysis in the Geophysical Observatory “Borok”. Vestnik ONZ RAN. Herald of the Earth Sciences Branch, Russian Academy of Sciences. 2010, 2. NZ6030. [In Russian].
9. Belbruno E., Moro-Martín A., Malhotra R., Savransky D. Chaotic exchange of solid material between planetary systems: implications for lithopanspermia. EPSC abstracts. 2012, 7: EPSC2012–139.
10. Bennett V.C. Probing the Mantle Past. Science. 2012, 335: 1051–1052.
11. Bradley J.P. Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets. Science. 1994, 265: 925–929.
12. Britt D.T., Consolmagno G.J. Meteorite porosities and densities: a review of trends in the data. Lunar and Planetary Science. 2004, XXXV: 2108.
13. Delmonte B., Petit J.R., Andersen K.K., Basile-Doelsch I., Maggi V., Lipenkov V.Ya. Dust size evidence for opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition. Climate Dynamics. 2004, 23: 427–438.
14. Dobrica E., Engrand C., Leroux H., Rouzaud J.-N., Duprat J. Transmission Electron Microscopy of CONCORDIA UltraCarbonaceous Antarctic MicroMeteorites (UCAMMs): Mineralogical properties. Geochimica et Cosmochimica Acta. 2012, 76: 68–82.
15. Dunlop J.S. The Cosmic History of Star Formation. Science. 2011, 333: 178–181.
16. Duprat J., Engrand C., Maurette M., Kurat G., Gounelle M., Hammer C. Micrometeorites from Central Antarctic snow: The Concordia collection. Advances in Space Research. 2007, 39: 605–611.
17. Ekaykin A.A., Lipenkov V.Ya., Kuzmina I.N., Petit J.R., Masson-Delmotte V., Johnsen S.J. The changes in isotope composition and accumulation of snow at Vostok station, East Antarctica, over the past 200 years. Annals of Glaciology. 2004, 39 (1): 569–575.
18. Fortman S.M., McMillan J.P., Neese C.F., Randall S.K., Remijan A.J., Wilson T.L., De Lucia F.C. An analysis of a preliminary ALMA Orion KL spectrum via the use of complete experimental spectra from the laboratory. Journ. of Molecular Spectroscopy. 2012. http://dx.doi.org/10.1016/j.jms.2012.08.002
19. Genge M.J., Engrand C., Gounelle M., Taylor S. The classification of micrometeorites. Meteoritics and Planetary Science. 2008, 43 (3): 497–515.
20. Genge M.J., Grady M.M., Hutchison R. The textures and compositions of fine-grained Antarctic micrometeorites – Implications for comparisons with meteorites. Geochimica et Cosmochimica Acta. 1997, 61: 5149–5162.
21. Grün E., Gustafson B.A.S., Dermott S.F., Fechtig H. (Eds.). Interplanetary Dust. Berlin: Springer. 2001: 804 p.
22. Harrison T.M., Blichert-Toft J., Müller W., Albarede F., Holden P., Mojzsis S.J. Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga. Science. 2005, 310: 1947–1950.
23. Hezel D.C., Russell S.S., Ross A.J., Kearsley A.T. Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. Meteoritics et Planetary Science. 2008, 43: 1879–1894.
24. Kalirai J.S. The age of the Milky Way inner halo. Nature. 2012, 486: 90–92.
25. Kurat G., Koeberl C., Presper T., Franz B., Maurette M. Petrology and geochemistry of Antarctic micrometeorites. Geochimica et Cosmochimica Acta. 1994, 58: 3879–3904.
26. Kwok S., Zhang Y. Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature. 2011, 479: 80–83.
27. Lanci L., Kent D.V., Biscaye P.E. Meteoric smoke concentration in the Vostok ice core estimated from superparamagnetic relaxation and some consequences for estimates of Earth accretion rate. Geophys. Research Letters. 2007, 34. L10803.
28. Mumma M.J., Dello Russo N., Di Santi M.A., Magee-Sauer K., Novak R.E., Brittain S., Rettig T., McLean I.S., Reuter D.C., Xu Li-H. Organic Composition of C/1999 S4 (LINEAR): A Comet Formed Near Jupiter? Science. 2001, 292: 1334–1339.
29. Plane J.M.C. Cosmic dust in the earth’s atmosphere. Chemical Society Reviews. 2012. DOI: 10.1039/c2cs35132c.
30. Seife C. Illuminating the Dark Universe. Science. 2003, 302: 2038–2039.
31. Stark D. Searching for the cosmic dawn. Nature. 2012, 489: 370–371.
32. Whipple F.L. The theory of micrometeorites. Part II. In heterothermal atmospheres. Proc. of the National Academy of Sciences. 1951, 37: 19–30.
33. Zheng W., Postman M., Zitrin A., Moustakas J., Shu X., Jouvel S., Høst O., Molino A., Bradley L., Coe D., Moustakas L.A., Carrasco M., Ford H., Benitez N., Lauer T.R., Seitz S., Bouwens R., Koekemoer A., Medezinski E., Batelmann M., Broadhurst T., Donahue M., Grillo C., Infante L., Jha S.W., Kelson D.D., Lahav O., Lemze D., Melchior P., Meneghetti M., Merten J., Nonino M., Ogaz S., Rosati P., Umetru K., van der Wel A. A magnified young galaxy from about 500 million years after the Big Bang. Nature. 2012, 489: 406–408.
Supplementary files
For citation: Bulat E.S., Celmovich V.A., Petit J., Gindilis I.M., Bulat S.A. SNOW COVER OF THE CENTRAL ANTARCTICA (VOSTOK STATION) AS AN IDEAL NATURAL TABLET FOR COSMIC DUST COLLECTION: PRELIMINARY RESULTS ON THE IDENTIFICATION OF MICROMETEORITES OF CARBONACEOUS CHONDRITE TYPE. Ice and Snow. 2012;52(4):146-152. https://doi.org/10.15356/2076-6734-2012-4-146-152
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)