SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION
https://doi.org/10.15356/2076-6734-2012-4-138-145
Abstract
Temperature gradients in the upper layers of the snow pack are of importance for studying the emissivity properties of the snow surface with respect to microwaves used in remote sensing as well as for the heat and mass transfer in snow thickness. Gradients drive the initial snow microstructure metamorphisms that probably influence the firn properties in regard to air molecules fractionation and the air bubble enclosure process at close-off depths. As a contribution to investigation of these problems and following J.-M. Barnola initiative, we developed an autonomous recording system to monitor the temperature of the upper layers of the snow pack. The instrument was built to be autonomous and to be continuously operating within environmental conditions of the Antarctic plateau and the polar night. The apparatus which monitors temperature from the first 10 mof snow by 15 sensors of a «temperature grape» was set at Vostok station during 55th Russian Antarctic Expedition within the frame of the French Russian collaboration (GDRI Vostok). From the available hourly measurements over the first year, we present preliminary results on the thermal diffusive properties of the snow pack as well as some character of the temperature variations on the Antarctic plateau.
About the Authors
E. LefebvreFrance
L. Arnaud
France
A. A. Ekaykin
Russian Federation
V. Y. Lipenkov
Russian Federation
G. Picard
France
J.-R. Petit
France
References
1. Lipenkov V.Ya., Shibaev Yu.A., Salamatin A.N., Ekaykin A.A., Vostretsov R.N., Preobraxhenskaya A.V. Modern climatic changes registered in variations of temperature in the upper 80 m layer of ice thickness at Vostok Station. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2004, 97: 44–56. [In Russian].
2. Barnola J.M., Raynaud D., Korotkevich Y.S., Lorius C. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature. 1987, 329 (6138): 408–414.
3. Bender M.L. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth and Planetary Science Letters. 2002, 204: 275–289.
4. Ekaykin A.A., Hondoh T., Lipenkov V.Ya., Miyamoto A. Post-depositional changes in snow isotope content: preliminary results of laboratory experiments. Climat. Past. 2009, 5: 2239–2267.
5. Ekaykin A.A., Lipenkov V.Ya., Kuzmina I.N., Petit J.R., Masson-Delmotte V., Johnsen S.J. The changes in isotope composition and accumulation of snow at Vostok Station, East Antarctica, over the past 200 years. Annals of Glaciology. 2004, 39: 569–575.
6. EPICA-community-member. Eight glacial cycles from an Antarctic ice core. Nature. 2004, 429: 623–628.
7. Frey M.M., Savarino J., Morin S., Erbland J., Martins J.M.F. Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling. Atmospheric Chemistry and Physics. 2009, 9 (22): 8681–8696.
8. Gallée H., Gorodetskaya I. Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Climate Dynamics. 2010, 34: 61–72.
9. Goujon C., Barnola J.-M., Ritz C. Modeling the densification of polar firn including heat diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. Journ. of Geophys. Research. 2003, 108: 4792. doi:10.1029/2002JD003319.
10. IPCC, Jansen E., Overpeck J., Briffa K.R., Duplessy J.-C., Joos F., Masson-Delmotte V., Olago D., Otto-Bliesner B., Peltier W.R., Rahmstorf S., Ramesh D.R., Rind D., Solomina O., Villalba R., Zhang D. Palaeoclimate. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller. Cambridge: Cambridge University Press, 2007.
11. Johnsen S.J., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J., Creyts T. Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion. Physics of Ice Core Records. Sapporo: Hokkaido University Press, 2000: 121–140.
12. Lipenkov V.Ya., Raynaud D., Loutre M.F., Duval P. On the potential of coupling air content and O2/N2 from trapped air for establishing an ice core chronology tuned on local insolation. Quaternary Science Reviews. 2011, 30: 3280–3289. doi:10.1016/j.quascirev.2011.07.013.
13. Luthi D., Le Floch M., Bereiter B., Blunier T., Barnola J.-M., Siegenthaler U., Raynaud D., Jouzel J., Fischer H., Kawamura K., Stocker T.F. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature. 2008, 453 (7193): 379–382.
14. Paillard D., Labeyrie L.D., Yiou P. Macintosh program performs time-series analysis. EOS, Trans. AGU, 1996, 77: 379.
15. Parrenin F., Barker S., Blunier T., Chappellaz J., Jouzel J., Landais A., Masson-Delmotte V., Schwander J., Veres D. On the gas-ice depth difference depth) along the EPICA Dome C ice core. Climat. Past. 2012, 8: 1239–1255. doi:10.5194/cp-8-1239-2012b.
16. Picard G., Brucker L., Fily M., Gallee H., Krinner G. Modeling time series of microwave brightness temperature in Antarctica. Journ. of Glaciology. 2009, 55 (191): 537–551.
17. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399 (6735): 429–436.
18. Raynaud D., Lipenkov V.Ya., Lemieux-Dudon B., Duval P., Loutre M.-F., Lhomme N. The local insolation signature of air content in Antarctic ice. A new step toward an absolute dating of ice records. Earth Planetary Science Letters. 2007, 261: 337–349.
19. Salamatin A.N., Lipenkov V.Ya. Simple relations for the close-off depth and age in dry snow densification. Annals of Glaciology. 2008, 49: 71–76.
20. Severinghaus J.P., Grachev A., Battle M. Thermal fractionation of air in polar firn by seasonal temperature gradients. Geochemistry Geophysics Geosystems. 2001, 2 (7): 290. doi:10.1029/2000GC000146.
21. Siegenthaler U., Stocker T.F., Monnin E., Luthi D., Schwander J., Stauffer B., Raynaud D., Barnola J.-M., Fischer H., Masson-Delmotte V., Jouzel J. Stable Carbon Cycle-Climate Relationship During the Late Pleistocene. Science. 2005, 310 (5752): 1313–1317.
22. Surdyk S. Low microwave brightness temperatures in central Antarctica: observed features and implications. Annals of Glaciology. 2002, 34: 134–140.
Supplementary files
For citation: Lefebvre E., Arnaud L., Ekaykin A.A., Lipenkov V.Y., Picard G., Petit J. SNOW TEMPERATURE MEASUREMENTS AT VOSTOK STATION FROM AN AUTONOMOUS RECORDING SYSTEM (TAUTO): PRELIMINARY RESULTS FROM THE FIRST YEAR OPERATION. Ice and Snow. 2012;52(4):138-145. https://doi.org/10.15356/2076-6734-2012-4-138-145
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)