Calibration of a mathematical model of Marukh Glacier, Western Caucasus
https://doi.org/10.15356/2076-6734-2015-2-9-20
Abstract
Considered in the paper, three-dimentsional mathematical model of dynamics of Marukh Glacier, Western Caucasus. Block structure of the model and interaction between blocs is described. Key model parameters are calibrated using field radio-echo-sounding, topographic and gravimetrical measurements, as well as observations on surface air temperature and precipitation amount at Klukhorsky Pereval meteostation, closest to the glacier. We determine meanings of parameters favourable to minimum deviations between calculated and observed flow velocities and normalized surface mass balance. The model is supposed to be used in future for prognostic calculations of Caucasus glacier evolution in changing climatic conditions.
About the Authors
О. О. RybakRussian Federation
Е. А. Rybak
Russian Federation
S. S. Kutuzov
Russian Federation
I. I. Lavrentiev
Russian Federation
P. А. Morozova
Russian Federation
References
1. . Кренке А.Н., Меншутин В.М., Волошина А.П., Панов В.Д., Бажев А.Б., Бажева В.Я., Балаева В.А., Виноградов О.Н., Воронина Л.С., Гарелик Л.С., Да видович Н.В., Дубинская Н.М., Мачерет Ю.Я., Мои сеева Г.П., Псарева Т.В., Тюлина Т.Ю., Фрейнд лин Т.С., Хмелевской И.Ф., Чернова Л.П., Шадрина О.В. Ледник Марух (Западный Кавказ) . Л .: Гидрометеоиздат, 1988 . 255 с .
2. . Кутузов С.С., Лаврентьев И.И., Мачерет Ю.Я., Петраков Д.А . Изменения ледника Марух с 1945 по 2011 г . // Лёд и Снег . 2012 . No 1 (117) . C . 123–127 .
3. . Лурье П.М., Панов В.Д. Изменение современного оледенения северного склона Большого Кавказа в ХХ в . и прогноз его деградации в ХХI в . // Метеорология и гидрология . 2014 . No 4 . С . 68–76 .
4. . Панов В.Д. Эволюция оледенения современного Кавказа: Дис . в виде научного доклада на соиск . уч . степ . д-ра геогр . наук . Ростов-на-Дону, Ростовский гос . ун-т, 2001 . 58 с .
5. . Рыбак О.О., Рыбак Е.А. Алгоритм решения системы уравнений течения льда в трехмерной математической модели // Изв . вузов . Северо-Кавказский регион . Естественные науки . 2010 . No 6 . С . 117–122 .
6. . Рыбак О.О., Фюрст Й.Я., Хёбрехтс Ф. Математическое моделирование течения льда в северо-западной Гренландии и интерпретация данных глубокого бурения на станции NEEM // Лёд и Снег . 2013 . No 1 (121) . С . 16–25 .
7. . Blatter H. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients // Journ . of Glaciology . 1995 . V . 41 . No 138 . P . 333–344 .
8. . Elsasser H., Bürki R . Climate change as a threat to tourism in the Alps // Climate Research . 2002 . V . 20 . P . 253–257 . doi:10 .3354/cr020253 .
9. . Fürst J.J., Rybak O., Goelzer H., De Smedt B., de Groen P., Huybrechts P. Improved convergence and stability properties in a three-dimensional higher-order ice sheet model // Geoscientific Model Development . 2011 . V . 4 . P . 1133–1149 .
10. . Hindmarsh R.C.A. A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modelling // Journ . of Geophys . Research . 2004 . V . 109 (F1) . doi:10 .1029/2003JF000065 .
11. . Hindmarsh R.C.A., Payne A.J. Time-step limits for stable solutions of the ice-sheet equation // Annals of Glaciology . 1996 . V . 23 . P . 74–85 .
12. . Khromova T., Nosenko G., Kutuzov S., Muraviev A., Cher nova L. Glacier area changes in Northern Eurasia // Environmental Research Letters . 2014 . V . 9 . P . 1–11 .
13. . Nemec J., Huybrechts P., Rybak O., Oerlemans J. Reconstruction of the surface mass balance of Morteratschgletscher since 1865 // Annals of Glaciology . 2009 . V . 50 . P . 126–134 .
14. . Oerlemans J. Glaciers and Climate change . Rotterdam: A .A . Balkema Publishers, 2001 . 148 p .
15. . Pattyn F . A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes // Journ . of Geophys . Research . 2003 . V . 108 . doi:10 .1029/2002JB002329
16. . Press W.H., Teukolsky S.A., Vetterling W.T., Flan nery B.P. Numerical Recipes . Cambridge, Cambridge University Press, 1992 . 963 p .
17. . Radić V., Hock R. Regionally differentiated contribution of mountain glaciers and ice caps to future sealevel rise // Nature Geoscience . 2011 . V . 4 . P . 91–94 . doi:10 .1038/ngeo1052 .
18. . Van der Veen C.J., Whillians I. Force budget: I . theory and numerical methods // Journ . of Glaciology . 1989 . V . 35 . P . 53–60 .
19. . Zekollari H., Huybrechts P., Fürst J.J., Rybak O., Eisen O. Calibration of a higher-order 3-D ice flow model of the Morteratsch glacier complex, Engadin, Switzerland // Annals of Glaciology . 2013 . V . 54 . P . 343–351 .
Supplementary files
For citation: Rybak О.О., Rybak Е.А., Kutuzov S.S., Lavrentiev I.I., Morozova P.А. Calibration of a mathematical model of Marukh Glacier, Western Caucasus. Ice and Snow. 2015;55(2):9-20. https://doi.org/10.15356/2076-6734-2015-2-9-20
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)