Calibration of a mathematical model of Marukh Glacier, Western Caucasus


https://doi.org/10.15356/2076-6734-2015-2-9-20

Full Text:




Abstract

Considered in the paper, three-dimentsional mathematical model of dynamics of Marukh Glacier, Western Caucasus. Block structure of the model and interaction between blocs is described. Key model parameters are calibrated using field radio-echo-sounding, topographic and gravimetrical measurements, as well as observations on surface air temperature and precipitation amount at Klukhorsky Pereval meteostation, closest to the glacier. We determine meanings of parameters favourable to minimum deviations between calculated and observed flow velocities and normalized surface mass balance. The model is supposed to be used in future for prognostic calculations of Caucasus glacier evolution in changing climatic conditions. 


About the Authors

О. О. Rybak
Institute of Natural and Technical Systems, Russian Academy of Sciences, Sochi; Scientific Research Center, Russian Academy of Sciences, Sochi; Earth System Sciences & Departement Geografie, Vrije Universiteit Brussel;
Russian Federation


Е. А. Rybak
Institute of Natural and Technical Systems, Russian Academy of Sciences, Sochi; Scientific Research Center, Russian Academy of Sciences, Sochi;
Russian Federation


S. S. Kutuzov
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


I. I. Lavrentiev
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


P. А. Morozova
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


References

1. . Кренке А.Н., Меншутин В.М., Волошина А.П., Панов В.Д., Бажев А.Б., Бажева В.Я., Балаева В.А., Виноградов О.Н., Воронина Л.С., Гарелик Л.С., Да­ видович Н.В., Дубинская Н.М., Мачерет Ю.Я., Мои­ сеева Г.П., Псарева Т.В., Тюлина Т.Ю., Фрейнд­ лин Т.С., Хмелевской И.Ф., Чернова Л.П., Шадри­на О.В. Ледник Марух (Западный Кавказ) . Л .: Гидрометеоиздат, 1988 . 255 с .

2. . Кутузов С.С., Лаврентьев И.И., Мачерет Ю.Я., Пе­траков Д.А . Изменения ледника Марух с 1945 по 2011 г . // Лёд и Снег . 2012 . No 1 (117) . C . 123–127 .

3. . Лурье П.М., Панов В.Д. Изменение современного оледенения северного склона Большого Кавказа в ХХ в . и прогноз его деградации в ХХI в . // Метеорология и гидрология . 2014 . No 4 . С . 68–76 .

4. . Панов В.Д. Эволюция оледенения современного Кавказа: Дис . в виде научного доклада на соиск . уч . степ . д-ра геогр . наук . Ростов-на-Дону, Ростовский гос . ун-т, 2001 . 58 с .

5. . Рыбак О.О., Рыбак Е.А. Алгоритм решения системы уравнений течения льда в трехмерной математической модели // Изв . вузов . Северо-Кавказский регион . Естественные науки . 2010 . No 6 . С . 117–122 .

6. . Рыбак О.О., Фюрст Й.Я., Хёбрехтс Ф. Математическое моделирование течения льда в северо-западной Гренландии и интерпретация данных глубокого бурения на станции NEEM // Лёд и Снег . 2013 . No 1 (121) . С . 16–25 .

7. . Blatter H. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients // Journ . of Glaciology . 1995 . V . 41 . No 138 . P . 333–344 .

8. . Elsasser H., Bürki R . Climate change as a threat to tourism in the Alps // Climate Research . 2002 . V . 20 . P . 253–257 . doi:10 .3354/cr020253 .

9. . Fürst J.J., Rybak O., Goelzer H., De Smedt B., de Groen P., Huybrechts P. Improved convergence and stability properties in a three-dimensional higher-order ice sheet model // Geoscientific Model Development . 2011 . V . 4 . P . 1133–1149 .

10. . Hindmarsh R.C.A. A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modelling // Journ . of Geophys . Research . 2004 . V . 109 (F1) . doi:10 .1029/2003JF000065 .

11. . Hindmarsh R.C.A., Payne A.J. Time-step limits for stable solutions of the ice-sheet equation // Annals of Glaciology . 1996 . V . 23 . P . 74–85 .

12. . Khromova T., Nosenko G., Kutuzov S., Muraviev A., Cher­ nova L. Glacier area changes in Northern Eurasia // Environmental Research Letters . 2014 . V . 9 . P . 1–11 .

13. . Nemec J., Huybrechts P., Rybak O., Oerlemans J. Reconstruction of the surface mass balance of Morteratschgletscher since 1865 // Annals of Glaciology . 2009 . V . 50 . P . 126–134 .

14. . Oerlemans J. Glaciers and Climate change . Rotterdam: A .A . Balkema Publishers, 2001 . 148 p .

15. . Pattyn F . A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes // Journ . of Geophys . Research . 2003 . V . 108 . doi:10 .1029/2002JB002329

16. . Press W.H., Teukolsky S.A., Vetterling W.T., Flan­ nery B.P. Numerical Recipes . Cambridge, Cambridge University Press, 1992 . 963 p .

17. . Radić V., Hock R. Regionally differentiated contribution of mountain glaciers and ice caps to future sealevel rise // Nature Geoscience . 2011 . V . 4 . P . 91–94 . doi:10 .1038/ngeo1052 .

18. . Van der Veen C.J., Whillians I. Force budget: I . theory and numerical methods // Journ . of Glaciology . 1989 . V . 35 . P . 53–60 .

19. . Zekollari H., Huybrechts P., Fürst J.J., Rybak O., Eisen O. Calibration of a higher-order 3-D ice flow model of the Morteratsch glacier complex, Engadin, Switzerland // Annals of Glaciology . 2013 . V . 54 . P . 343–351 .


Supplementary files

For citation: Rybak О.О., Rybak Е.А., Kutuzov S.S., Lavrentiev I.I., Morozova P.А. Calibration of a mathematical model of Marukh Glacier, Western Caucasus. Ice and Snow. 2015;55(2):9-20. https://doi.org/10.15356/2076-6734-2015-2-9-20

Views: 1349

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)