Isotopic Сomposition (δ18O, δ2H) of Snow Cover on the Yamal Peninsula


https://doi.org/10.7868/S2412376525030087

Full Text:




Abstract

Two field campaigns to study snow cover on the territory of the Yamal Peninsula were undertaken in the spring of 2017–2019 by the scientists of the Earth Cryosphere Institute. One of the study topics was isotopic composition of snow cover and its changes under the influence of external factors. The average values of the snow water isotopes are δ18O = –20.207±3.3‰ and δD = –152.677±23.8‰. The linear regression equation for snow cover of the study area is δ2H = 6.8δ18O – 15.5. Deuterium excess has an average value of 9.6‰ with a range of 27.5‰. The isotopic composition of fresh and old snow in high latitude areas has clear differences. Old snow has higher values of δ18O and δ2H; lower values of slope of the regression line and intercept. The isotopic composition of the snow cover does not depend on the location of the sampling points on the peninsula and depends rather on the height and density of the snow cover. The dependencies of the isotopic composition of fresh snow on weather characteristics were confirmed according to weather station data in Salekhard in 1996–2000. The deeper parts of the snow profiles have higher δ18O and δ2H values than the upper ones. The average difference between the horizons was 2.83‰ for δ18O and 20.17‰ for δD. The equation of the relationship between δ18O and δ2H in the deeper horizons has a lower slope and intercept values, as a result of deep hoar horizon metamorphism. The isotopic composition of snow lying on the lake ice surface is heavier than on the soil surface due to its lower height and the influence of lake water during uneven freezing of the water.

About the Authors

N. Yu. Fakashchuk
Earth Cryosphere Institute, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences
Russian Federation
Tyumen


O. L. Opokina
Earth Cryosphere Institute, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences
Russian Federation
Tyumen


A. V. Khomutov
Earth Cryosphere Institute, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences
Russian Federation
Tyumen


Yu. A. Dvornikov
Smart Urban Nature laboratory, RUDN University; Laboratory of carbon monitoring in terrestrial ecosystems, Institute of physicochemical and biological problems of soil science, RAS
Russian Federation

Moscow

Pushchino



References

1. Babkina E.A., Leibman M.O., Dvornikov Yu.A., Fakashuk N. Yu., Khairullin R.R., Khomutov A.V. Activation of cryogenic processes in Central Yamal because of Regional and Local change in climate and thermal state of permafrost. Mieteorologia i Gidrologia. Russian Meteorology and Hydrology. 2019, 44 (4): 283–290. https://doi.org/10.3103/S1068373919040083 [In Russian].

2. Borodulina G.S., Tokarev I.V., Levichev M.A. Isotopic composition (δ18O, δ2H) of the snow cover of Karelia. Led i Sneg. Ice and Snow. 2021, 61 (4): 521–532. https://doi.org/10.31857/S2076673421040105 [In Russian].

3. Vasil’chuk Yu.K. Isotopno-kislorodny sostav podzemnyh ldov (opyt paleogeocriologicheskih reconstructsii) Isotope-oxygen composition of underground ice (experience of paleogeocryologic reconstructions). Moscow: Publishing House of the Russian Academy of Sciences, 1992, 1: 420 p. [In Russian].

4. Vasil’chuk Yu.K., Chizhova Yu.N., Papesh V. Trend of isotopic composition of individual winter snowfall in northeastern Europe. Kriosfera Zemli. Earth’s Cryosphere. 2005, 9 (3): 81–87 [In Russian].

5. Vasil’chuk Yu.K., Budantseva N.A., Vasil’chuk A.K., Chizhova Ju.N. Izotopnye metody v geografii. Ch. 3. Geokhimiya stabil’nykh izotopov atmosfery i gidrosfery. Isotope ratios in the environment. Pt. 3. Geochemistry of stable isotopes in the atmosphere and hydrosphere. Moscow: MSU, 2013: 216 p. [In Russian].

6. Vasil’chuk Yu.K., Shevchenko V.P., Lisitsyn A.P., Budantseva N.A., Vorobyov S.N., Kirpotin S.N., Kritskov I.V., Manasypov P.M., Pokrovsky O.S., Chizhova Yu.N. Isotope-oxygen and deuterium composition of the snow cover of Western Siberia on a profile from Tomsk to the Ob Bay. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2016, 471 (5): 770–775 [In Russian].

7. Ekaikin A.A. Stabilie isotopy vody v gliyatsiologii I paleogeographii. Stable isotopes of water in glaciology and paleogeography. Saint Petersburg: AARI, 2016: 63 p. [In Russian].

8. Imshenetskiy V.V., Orlov Yu.N. SPG tehnologii perspectivnie variant razrabotki gazovykh mestorogdenii na poluostrove Jamal. LNG technology is a promising option for developing gas resources of the Yamal Peninsula. Moscow, 2005 [In Russian].

9. Kotlyakov V.M., Gordienko F.G. Isotopnaia i geokhimicheskaia gliatsiologia. Isotope and geochemical glaciology. Leningrad: Hydrometeoizdat, 1982: 288 p. [In Russian].

10. Vasil'chuk Ju.K., Krylov G.V. (Eds). Criosphera neftegazovykh mestorogdenii na poluostrove Jamal. Ch. 1: Criosphera Kharasoveiskogo mestorogdenia. Cryosphere of oil and gas condensate fields of the Yamal Peninsula: V. 1: Cryosphere of the Kharasaveyskoye gas con

11. densate field. Tyumen: OOO “TyumenNIIgiprogaz”; Saint Petersburg: Nedra, 2006: 347 p. [In Russian].

12. Kritsuk L.N. Podzemyi led Zapadnoj Sibiri. Underground Ice of Western Siberia. Moscow: Scientific World, 2010: 352 p. [In Russian].

13. Lepokurova O.E., Ivanova I.S., Pyryaev A.N. Using Stable Isotopes of Hydrogen, Oxygen, and Carbon in Interpreting the Conditions of Formation of Surface Water Bodies in the Yamalo-Nenets Autonomous Okrug. Bulluten’ Tomskogo Politehnicheskogo Universiteta. Bulletin of Tomsk Polytechnic University. Georesources Engineering. 2023, 334 (6): 7–19 [In Russian].

14. Lisitsyn A.P., Vasilchuk Yu.K., Shevchenko V.P., Budantseva N.A., Krasnova E.D., Pantyulin A.N., Filippov A.S., Chizhova Yu.N. Isotope-oxygen composition of water and snow-ice cover of separating reservoirs at different stages of isolation from the White Sea. Doklady Aka

15. demii Nauk. Reports of the Academy of Sciences. 2013, 449 (4): 467–473 [In Russian].

16. Malygina N.S., Eirikh A.N., Kurepina N.Yu., Papina T.S. Isotopic composition of winter precipitation and snow cover in the Altai foothills. Led i Sneg. Ice and Snow. 2017, 57 (1): 57–68. https://doi.org/10.15356/2076-6734-2017-1-57-68 [In Russian].

17. Malygina N.S., Eirikh A.N., Agbalyan E.V., Papina T.S. Isotopic composition and source regions of winter precipitation in the Nadym Lowland. Led i Sneg. Ice and Snow. 2020, 60 (1): 98–108 [In Russian].

18. Otsenochnii doklad klimaticheskih izmenenii i ikh posledstvii na territirii Rossii. Assessment report on climate change and its consequences in the territory of the Russian Federation. Moscow: Roshydromet, 2008: 91 p. [In Russian].

19. Papina T.S., Malygina N.S., Eirich A.N., Galanin A.A., Zheleznyak M.N. Isotopic composition and sources of atmospheric precipitation in Central Yakutia. Kriosfera Zemli. Cryosphere of the Earth. 2017, 21 (2): 60–69 [In Russian].

20. Sampsonov R.O., Ilatovsky Yu.V., Pystina N.B., Baranov A.V. Climate of the Yamal Peninsula and the consequences of its change, complicating the production and transportation of hydrocarbons. Gazovaja promyshlennost’. Gas Industry. 2010, 2: 82–84 [In Russian].

21. Slagoda E.A., Opokina O.L., Kurchatova A.N., Rogov V.V. Structure and varieties of underground ice in the Upper Neopleistocene-Holocene deposits of Western

22. Yamal (Cape Marre-Sale). Criosfiera Zemli. Earth’s Cryosphere. 2012, 16 (2): 9–22 [In Russian].

23. Spetsializirovannye massivy dlya climaticheskih issledovanii. Specialized arrays for climate research: Electronic data. Retrieved from: http://aisori-m.meteo.ru/waisori/ (Last access: March 17, 2025) [In Russian].

24. Chizhova Yu.N., Vasilchuk Yu.K. Deuterium excess in snow and glaciers of the Polar Urals and massive ice in the south of Yamal and the coast of Baydaratskaya Bay. Arctica i Antarctica. Arctic and Antarctic. 2017, 2: 100–111 [In Russian].

25. Chizhova J.N., Vasilchuk J.Y., Yoshikawa K., Budantseva N.A., Golovanov D.L., Sorokina O.I., Stanilovskaya J.V., Vasil’chuk Yu.K. Isotope composition of snow сover in the Lake Baikal area. Led I Sneg. Ice and Snow. 2015, 55 (3): 55–66. https://doi.org/10.15356/2076-6734-2015-3-55-66 [In Russian].

26. Ala-aho P., Soulsby C., Pokrovsky O.S., Kirpotin S.N., Karlsson J., Serikova S., Vorobyev S.N., Manasypov R.M., Loiko S., Tetzlaff D. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J. Hydrol. 2018, 556: 279–293 https://doi.org/10.1016/j.jhydrol.2017.11.024

27. Ala-aho P., Welker J.M., Bailey H., Højlund Pedersen S., Kopec B., Klein E., Mellat M., Mustonen K.-R., Noor K., Marttila H. Arctic Snow Isotope Hydrology: A Comparative Snow-Water Vapor Study. Atmosphere. 2021,2 : 150. https://doi.org/10.3390/atmos12020150

28. Craig H. Isotopic variations in meteoric waters.Science. 1961, 133: 1702–1703 https://doi.org/10.1126/science.133.3465.1702

29. Dansgaard W., Johnsen S.J., Clausen H.B., Gundestrup N. Stable isotope glaciology // Meddelelser om Gronland. 1973, 197 (2): 49–53.IsoMAP – Isoscapes Modeling, Analysis and Prediction: Electronic data. Retrieved from: https://wateriso.utah.edu/waterisotopes/index.html (Last access: March 17, 2025).

30. Friedman I., Benson C., Gleason J. Isotopic changes during snow metamorphism. In: H.P. Taylor, Jr., J.R. O'Neil, I.R. Kaplan (Eds). Stable Isotope Geochemistry: A Tribute to Samuel Epstein. The Geochemical Society, Special Publication No. 3. San Antonio: The Geochemical Society, 1991: 211–221.

31. Hughes A.G., Wahl S., Jones T.R., Zuhr A., Hörhold M., White J.W.C., Steen-Larsen H.C. The role of sublimation as a driver of climate signals in the water isotope content of surface snow: laboratory and field experimental results. The Cryosphere. 2021, 15: 4949–4974. https://doi.org/10.5194/tc-2021-87

32. Kurita N., Sugimoto A., Fujii Y., Fukazawa T., Makarov V.N., Watanabe O., Ichiyanagi K., Numaguti A., Yoshida N. Isotopic composition and origin of snow over Siberia. J. Geophys. Res. 2005, 110: D13102. https://doi.org/10.1029/2004JD005053

33. Previdi M., Smith K.L., Polvani L.M. Arctic amplification of climate change: are view of underlying mechanisms. Environ. Res. Lett. 2021, 16: 093003. https://doi.org/10.1088/1748-9326/ac1c29

34. Lepokurova O.E., Ivanova I.S., Pyryaev A.N. Use of stable isotopes of hydrogen, oxygen and carbon in interpreting the conditions of formation of surface water bodies of the Yamalo-Nenets Autonomous Okrug. Bulletin of Tomsk Polytechnic University. Georesources En gineering. 2023, 334 (6): 7–19.

35. Sommerfield R.A., Judy C., Friedman I. Isotopic changes during the formation of depth hoar in experimental snowpacks. In: H.P. Taylor, J.R. O’Neil and I.R. Kaplan (Eds). Stable Isotope Geochemistry: A Tribute to Samuel Epstein. The Geochemical Society, Special Publication No. 3. San Antonio: The Geochemical Society, 1991: 205–210.

36. Steen-Larsen H.C., Masson-Delmotte V., Hirabayashi M., Winkler R., Satow K., Prié F., Bayou N., Brun E., Cuffey K.M., Dahl-Jensen D., Dumont M., Guillevic M., Kipfstuhl S., Landais A., Popp T., Risi C., Steffen K., Stenni B., Sveinbjörnsdottír A.E. What controls the isotopic composition of Greenland surface snow? Clim. Past. 2014, 10: 377–392. https://doi.org/10.5194/cp-10-377-2014

37. Taylor S., Feng X., Kirchner J.W., Osterhuber R., Klaue В., Renshaw C.E. Isotopic evolution of a seasonal snowpack and its melt. Water Resources Research. 2001, 37(3): 759–769.

38. Water Isotope System for Electronic Retrieval (WISER), its central data hub for isotope and geochemical data in hydrology: Electronic data. Retrieved from: https://nucleus.iaea.org/wiser/explore/ (Last access: March 17, 2025).


Supplementary files

For citation: Fakashchuk N.Y., Opokina O.L., Khomutov A.V., Dvornikov Y.A. Isotopic Сomposition (δ18O, δ2H) of Snow Cover on the Yamal Peninsula. Ice and Snow. 2025;65(3):461-475. https://doi.org/10.7868/S2412376525030087

Views: 10

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)