Environmental changes in Svalbard at the beginning of the 21st century. Part 1. Climate, ocean, and sea ice
https://doi.org/10.7868/S2412376525040139
Abstract
This review provides the present-day assessment of natural environment state of the Svalbard Archipelago in the first quarter of the 21st century. In recent decades, the region was subjected to significant environmental changes due to fast climate warming associated with the Arctic amplification, when rates of the surface temperature growth exceeded the global means by several times. This resulted in marked transformation of the local ecosystems. The key environmental factors, including (1) climate, (2) oceanography, (3) sea ice, are considered in the first part of the article. The paper presents current trends in surface air temperature and sea ice, as well as the dynamics of Atlantic Water inflow into the archipelago’s fjords. Although Svalbard is among the most accessible and thoroughly studied regions of the Arctic, there are significant gaps in knowledge due to technical and methodological difficulties. The problems involve fragmented and incorrect data on the atmospheric precipitation, a lack of yearround oceanographic observations, and insufficient understanding of the impacts of Atlantic water on the fjords. These aspects open ways for future research, with a particular emphasis on interdisciplinary approaches that may enhance understanding of ecosystem changes in the context of climate change.
About the Authors
U. V. ProkhorovaRussian Federation
Saint Petersburg
E. V. Bloshkina
Russian Federation
Saint Petersburg
M. S. Mahotin
Russian Federation
Saint Petersburg
A. V. Vesman
Russian Federation
Saint Petersburg
A. V. Terekhov
Russian Federation
Saint Petersburg
A. L. Borisik
Russian Federation
Saint Petersburg
K. V. Romashova
Russian Federation
Saint Petersburg
R. A. Chernov
Russian Federation
Moscow
I. I. Vasilevich
Russian Federation
Saint Petersburg
V. E. Demidov
Russian Federation
Saint Petersburg
References
1. Alekseev G.V. Manifestation and intensification of global warming in the Arctic. Fundamentalnaya i prikladnaya klimatologiya. Fundamental and Applied Climatology. 2015, 1: 11–26. [In Russian].
2. Vesman A.V., Ivanov B.V. Characteristic types of ice conditions north of the Svalbard archipelago. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2022, 68 (2): 118–132. [In Russian].
3. Sosnovskiy A.V., Chernov R.A.Influence of snow cover on cooling of the surface layer of the Vostochny Grønfjord glacier (Spitsbergen). Led i Sneg. Ice and Snow. 2021, 61 (1): 75–88. https://doi.org/10.31857/S2076673421010072 [In Russian].
4. Aas K.S., Dunse T., Collier E., Schuler T.V., Berntsen T.K., Kohler J., Luks B. The climatic mass balance of Svalbard glaciers: A 10 year simulation with a coupled atmosphere–glacier mass balance model. The Cryosphere. 2016, 10: 1089–1104.
5. Bloshkina E.V., Pavlov A.K., FilchukK. Warming of Atlantic water in three West Spitsbergen fjords: Recent patterns and century-long trends. Polar Research. 2021, 40. https://doi.org/10.33265/polar.v40.5392
6. Cottier F., Tverberg V., Inall M., Svendsen H., Nilsen F., Griffiths C. Water mass modification in an Arctic fjord through cross‐shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. Journ. of Geophysical Research. 2005, 110: 12. https://doi.org/10.1029/2004jc002757
7. DahlkeS., HughesN.E., WagnerP.M., GerlandS., WawrzyniakT., Ivanov B., Maturilli M.The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover. International Journ. of Climatology. 2020, 40 (12): 5246–5265. https://doi.org/10.1002/joc.6517
8. De Rovere F., Langone L., Schroeder K., Miserocchi S., Giglio F., Aliani S., Chiggiato J. Masses variability in inner Kongsfjorden (Svalbard) during 2010–2020. Frontiers in Marine Science. 2022, 9: 741075. https://doi.org/10.3389/fmars.2022.741075
9. Divine D.V., Dick C. Historical variability of sea ice edge position in the Nordic Seas. Journ. of Geophysical Research: Oceans. 2006, 111 (C1).
10. European Climate Assessment & Dataset project. Retrieved from: https://www.ecad.eu/ (Last access: June, 25 2025).
11. Falk-Petersen S., Pavlov V., Berge J., Cottier F., Kovacs K.M., Lydersen C. At the rainbow’s end: High productivity fueled by winter upwelling along an Arctic shelf. Polar Biology. 2015, 38: 5–11.
12. Førland E.J., Benestad R., Hanssen-Bauer I., Haugen J.E., Skaugen T.E. Temperature and precipitation development at Svalbard 1900–2100. Advances in meteorology. 2011: 893790. https://doi.org/10.1155/2011/893790
13. Førland E.J., Isaksen K., Lutz J., Hanssen-Bauer I., Schuler T.V., Dobler A., Gjelten H.M., VikhamarSchuler D. Measured and modeled historical precipitation trends for Svalbard. Journ. of Hydrometeorology. 2020, 21 (6): 1279–1296. https://doi.org/10.1175/JHM-D19-0252.1
14. Gerland S., HallR.Variability of fast-ice thickness in Spitsbergen fjords. Annals of Glaciology. 2006, 44: 231–239. https://doi.org/10.3189/172756406781811367
15. Gjelten H.M., Nordli Ø., Isaksen K., Førland E.J., Sviashchennikov P.N., Wyszynski P., ProkhorovaU.V., Przybylak R., Ivanov B.V., Urazgildeeva A.V. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Research. 2016, 35 (1): 29878.
16. Grünberg I., Groenke B., Westermann S., Boike J. Permafrost and active layer temperature and freeze/ thaw timing reflect climatic trends at Bayelva, Svalbard. Journ. of Geophysical Research: Earth Surface. 2024, 129: e2024JF007648 https://doi.org/10.1029/2024JF007648
17. Hanssen-Bauer I. Climate in Svalbard 2100. A knowledge base for climate adaptation. 2019: 208 p.
18. Hestnes E., Bakkehoi S., Jaedicke C. Longyearbyen, Svalbard – vulnerability and risk management of an Arctic settlement under changing climate – a challenge to authorities and experts. Proceedings of the International Snow Science Workshop, Breckenridge, USA. 2016, 363–370.
19. Høyland K.V.Ice thickness, growth and salinity in Van Mijenfjorden, Svalbard, Norway. Polar Research. 2009, 28 (3): 339–352.
20. IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change IPCC, Geneva, Switzerland. 2023: 35–115. https://doi.org/10.59327/IPCC/AR6-9789291691647
21. Isaksen K., Nordli Ø., Førland E.J., Łupikasza E., Eastwood S., Niedźwiedź T. Recent warming on Spitsbergen–Influence of atmospheric circulation and sea ice cover. Journal of Geophys. Research: Atmospheres. 2016, 121: 11.913–11.931.
22. Koc N., Jansen E., Haflidason H. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on diatoms. Quaternary Science Reviews. 1993, 12: 115–140.
23. Laufer-Meiser K., Michaud A.B., Maisch M., Byrne J.M., Kappler A., Patterson M.O., Røy H., Jørgensen B.B. Potentially bioavailable iron produced through benthic cycling in glaciated Arctic fjords of Svalbard. Nature Communications. 2021, 12 (1): 1349.
24. Martín-Español A., Navarro F.J., Otero J., Lapazaran J.J., Błaszczyk M. Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships. Journ. of Glaciology. 2015, 61 (225): 29–41.
25. Merchel M., Walczowski W. Increases in the temperature and salinity of deep and intermediate waters in the West Spitsbergen Current region in 1997–2016. Oceanologia. 2020, 62 (4): 501–510 https://doi.org/10.1016/j.oceano.2020.08.001
26. Muckenhuber S., Nilsen F., Korosov A., Sandven S. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000– 2014) from remote sensing data. The Cryosphere. 2016, 10 (1): P. 149–158.
27. Nilsen F., Cottier F., Skogseth R., Mattsson S. Fjord-shelf exchanges controlled by ice and brine production: The interannual variation if Atlantic Water in Isfjorden, Svalbard. Cont. Shelf Res. 2008, 28: 1838–1853. https://doi.org/10.1016/j.csr.2008.04.015
28. Nilsen F., Skogseth R., Vaardal-Lunde J., Inall M.E. A simple shelf circulation model: intrusion of Atlantic Water on the West Spitsbergen Shelf. Journ. of Physical Oceanography. 2016, (46): 1209–1230.
29. Nordli Ø., Przybylak R., Ogilvie A.E., Isaksen K. Long-term temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898– 2012. Polar research. 2014, 33 (1): 21349.
30. Nordli Ø., Wyszyński P., Gjelten H., Isaksen K., Łupikasza E., Niedźwiedź T., Przybylak R. Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898– 2018. Polar Research. 2020, 39: 3613.
31. Onarheim I.H., Smedsrud L.H., Ingvaldsen R.B., Nilsen F. Loss of sea ice during winter north of Svalbard. Tellus A: Dynamic Meteorology and Oceanography. 2014, 66 (1): 23933.
32. PavlovaO., GerlandS., HopH.Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard (2003–2016). The ecosystem of Kongsfjorden, Svalbard. 2019: 105–136. https://doi.org/10.1007/978-3-319-46425-1_4
33. Pilguj N., Kolendowicz L., Kryza M., Migała K., Czernecki B. Temporal changes in wind conditions at Svalbard for the years 1986–2015. Geografiska Annaler: Series A, Physical Geography. 2019, 101 (2): 136–156.
34. Prokhorova U.V., Terekhov A.V., Demidov V.E., Romashova K.V., Barskov K.V., Chechin D.G., Vasilevich I.I., Tretiakov M.V., Ivanov B.V., Repina I.A., Verkulich S.R. Impact of Extreme Weather Events on the Surface Energy Balance of the Low-Elevation Svalbard Glacier Aldegondabreen. Water. 2025, 17 (2): 274.
35. ProkhorovaU., Terekhov A., IvanovB., Demidov V. Heat balance of a low-elevated Svalbard glacier during the ablation season: A case study of Aldegondabreen. Arctic, Antarctic, and Alpine Research. 2023, 55 (1): 2190057. https://doi.org/10.1080/15230430.2023.2190057
36. Skogseth R., Olivier L.L.A., Nilsen F., Falck E., Fraser N., Tverberg V., Ledang A.B., Vader A., Jonassen M.O., Søreide J., Cottier F., Berge J., Ivanov B.V., FalkPetersen S. Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation – an indicator for climate change in the European Arctic. Progress in Oceanography. 2020, 187: 102394 https://doi.org/10.1016/j.pocean.2020.102394
37. Smedsrud L.H., Halvorsen M.H., Stroeve J.C., Zhang R., Kloster K. Fram Strait sea ice export variability and September Arctic Sea ice extent over the last 80 years. The Cryosphere. 2017, 11 (1): 65–79. https://doi.org/10.5194/tc11-65-2017
38. Strzelewicz A., PrzyborskaA., WalczowskiW.Increased presence of Atlantic water on the shelf south‐west of Spitsbergen with implications for the Arctic fjord Hornsund. Progress in Oceanography. 2022, 200: 102714. https://doi.org/10.1016/j.pocean.2021.102714
39. Svendsen J.I., Mangerud J. Holocene glacial and climatic variations on Spitsbergen, Svalbard. The Holocene. 1997, 7 (1): 45–57.
40. Svendsen H., Beszczynska‐Moller A., Hagen J.O., Lefauconnier B., Tverberg V., Gerland S., Ørbæk J.B., Bischof K., Papucci C., Zajaczkowski M., Azzolini R., Bruland O., Wiencke C., Winther J.-G., Dallman W. The physical environment of Kongsfjorden– Krossfjorden, an Arctic fjord system in Svalbard. Polar research. 2002, 21 (1): 133–166. https://doi.org/10.1111/j.1751‐8369.2002.tb00072.x
41. Promińska A., Falck E., Walczowski W.Interannual variability in hydrography and water mass distribution in Hornsund, an Arctic fjord in Svalbard. Polar Research. 2018, 37 (1): 1495546. https://doi.org/10.1080/ 17518369.2018.1495546
42. Tverberg V., Skogseth R., Cottier F., Sundfjord A., Walczowski W., Inall M.E., Falck E., Pavlova O., Nilsen F. The Kongsfjorden transect: seasonal and interannual variability in hydrography. The ecosystem of Kongsfjorden, Svalbard. Cham: Springer, 2019: 49–104.
43. Urbański J.A., Litwicka D. The decline of Svalbard landfast sea ice extent as a result of climate change. Oceanologia. 2022, 64 (3): 535–545.
44. Vickers H., Saloranta T., Køltzow M., van Pelt W.J.J., Malnes E. An analysis of winter rain-on-snow climatology in Svalbard. Front. Earth Sci. 2024, 12: 1342731. https://doi.org/10.3389/feart.2024.1342731
45. Vinje T., Nordlund N., Kvambekk Å. Monitoring ice thickness in Fram Strait. Journ. of Geophysical Research: Oceans. 1998, 103 (C5): 10437–10449.
46. Walczowski W., Beszczynska-Möller A., Wieczorek P., Merchel M., Grynczel A. Oceanographic observations in the Nordic Sea and Fram Strait in 2016 under the IO PAN long-term monitoring program AREX. Oceanologia. 2017, 59 (2): 187–194. https://doi.org/10.1016/j.oceano.2016.12.003
47. Wickström S., Jonassen M.O., Cassano J.J., Vihma T. Present temperature, precipitation, and rain‐on‐snow climate in Svalbard. Journ. of Geophysical Research: Atmospheres. 2020, 125 (14): e2019JD032155.
48. Zou X., Ding M., Sun W., Yang D., Liu W., Huai B., Jin S., Xiao C. The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014. Polar Research. 2021: 40.
49. Zhuravskiy D., Ivanov B., Pavlov A.Ice conditions at Gronfjorden Bay, Svalbard, from 1974 to 2008. Polar Geography. 2012, 35 (2): 169–176.
Supplementary files
For citation: Prokhorova U.V., Bloshkina E.V., Mahotin M.S., Vesman A.V., Terekhov A.V., Borisik A.L., Romashova K.V., Chernov R.A., Vasilevich I.I., Demidov V.E. Environmental changes in Svalbard at the beginning of the 21st century. Part 1. Climate, ocean, and sea ice. Ice and Snow. 2025;65(4):703-717. https://doi.org/10.7868/S2412376525040139
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)











.png)
.png)





.png)




