Thermal Regime of Permafrost in the Borehole Depending on the Snow Cover Thickness in the Area of the Polar Station “Samoilovsky Island” (Lena River Delta)


https://doi.org/10.7868/S2412376525030066

Full Text:




Abstract

The paper analyzes long-term temperature monitoring data in a borehole at the station “Samoylov Island” in the Lena River delta. Temperature measurements over 12 years (from late 2006 to early 2019) show a warming of permafrost at a depth of 26.5 m by 1.3 °C. At the same time, air temperature does not show a noticeable rise during this period. To identify the factors influencing the temperature in the borehole, a numerical simulation of the soil temperature changes was carried out. The simulation was performed taking into account the warming effect of snow cover on the the freezing/thawing processes of the upper active layer. Based on the modeling results, it was concluded that the warming of the borehole is associated with increasing in the thickness of the snow cover due to the construction of buildings that accumulate snow around the borehole area. The thermal diffusivity of soils near the borehole at different depths (from 10 down to 21 meters) is amounted within a range of (0.88–1.18)⋅10–6 m²/s that was determined using the 12-year temperature records (from 2006 to 2019) of seasonal temperature f luctuations at different depths. The time necessary for the borehole to reach a new thermal regime under conditions of an increasing snow thickness accumulating near the borehole was estimated. A new steady-state regime of the borehole was determined, in which the average temperature values at depths of 15.75, 20.75 and 26.75 meters may reach by 2062 are as –4.8, –5.1, –5.5 °C, respectively; in 2018, these temperatures were equal to: –6.81, –7.42, –7.86 °C.

About the Authors

I. I. Fadeeva
Trofimuk Institute of Petroleum-Gas Geology and Geophysics of the Siberian Branch of the RAS
Russian Federation
Novosibirsk


A. A. Duchkov
Trofimuk Institute of Petroleum-Gas Geology and Geophysics of the Siberian Branch of the RAS
Russian Federation
Novosibirsk


D. E. Ayunov
Trofimuk Institute of Petroleum-Gas Geology and Geophysics of the Siberian Branch of the RAS
Russian Federation
Novosibirsk


References

1. Adamenko M.M., Gutak Y.M., Trenkov I.P. Changes in the intra-annual distribution of precipitation and the dynamics of snowfall in the Kuznetsk Alatau Mountains. Geosfernye issledovaniya. Geosphere Research. 2021, 2: 101–109.https://doi.org/10.17223/25421379/19/9 [In Russian].

2. Dubrovin V.A., Brushkov A.V., Drozdov D.S., Zheleznyak M.N. Study, current state, prospects and problems of development of the Arctic cryolithozone. Mineralnye resursy Rossii. Mineral resources of Russia. 2019, 3: 55–64 [In Russian].

3. Karslou G., Eger D. Teploprovodnost’ tverdykh tel. Conduction of heat in solids. Moscow: Nauka, 1964: 488 p. [In Russian].

4. Milankovitch M. Matematicheskaya klimatologiya i astronomicheskaya teoriya kolebanij klimata Mathematical climatology and astronomical theory of climate oscillations. Moscow, Leningrad: State Scientific and Technical Publishing House, 1939: 208 p. [In Russian].

5. Mokhov I.I., Eliseev A.V., Guryanov V.V. Model estimates of global and regional climate changes in the Holocene. Doklady Rossijskoj akademii nauk. Nauki o Zemle. Doklady Earth Sciences. 2020, 490 (1): 27–32 [In Russian].

6. Mokhov I.I. Climate change: causes, risks, consequences, problems of adaptation and regulation. Vestnik Rossijskoj akademii nauk. Bulletin of the Russian Academy of Sciences. 2022, 92 (1): 3–14 [In Russian].

7. Pavlov A.V. Teploobmen pochvy s atmosferoj v severnykh i umerennykh shirotakh territorii SSSR. Heat exchange of soil with the atmosphere in the northern and temperate latitudes of the USSR. Yakutsk: Yakutsk book house, 1975: 301 p. [In Russian].

8. Popov A.I., Tushinskij G.K. Merzlotovedenie i glyaciologiya. Permafrost studies and glaciology. Moscow: Higher school, 1973: 271 p. [In Russian].

9. Samarsky A.A., Moiseenko B.D. Economic scheme of endto-end accounting for the multidimensional Stefan problem. Zhurnal vychislitel’noj matematiki i matem

10. aticheskoj fiziki. Computational Mathematics and Mathematical Physics. 1965, 5 (5): 816 -827. [In Russian].

11. Fadeeva I.I., Ayunov D.E. Model analysis of snow thickness influence on the temperature state of permafrost on Samoilovsky Island based on temperature monitoring data. Interekspo GEO-Sibir – XX Mezhdunarodnyj nauchnyj congress. SGUGi T. Interexpo GEO-Siberia – XX International Scientific Congress. Novosibirsk: SSUGT, 2024, 2 (4): 140–146 [In Russian].

12. Chuvilin E.M., Sokolova N.S., Bukhanov B.A., Istomin V.A., Mingareeva G.R. Determination of the freezing point of soils based on measurements of pore water potential. Kriosfera Zemli. Cryosphere of the Earth. 2020, 24 (6): 11–20 [In Russian].

13. earth.google: official site. Retrieved from: URL: https://earth.google.com/ (Last access: May 10, 2025).ipgg.sbras: official site. Retrieved from: URL: http://www.ipgg.sbras.ru/ru/science/projects/fwzz-2022-0031geologo-geophizicheskie-issledovaniya-2022 (Last access: May 10, 2025).

14. retromap: official site. Retrieved from: URL: http://retromap.ru/ (Last access: May 10, 2025).

15. Biskaborn B.K., Smith S.L., Noetzli J., Matthes H., Vieira G., Streletskiy D.A., Schoeneich P., Romanovsky V.E., Lewkowicz A.G., Abramov A., Allard M., Boike J., Cable W.L., Christiansen H.H., Delaloye R., Diekmann B., Drozdov D., Etzelmüller B., Grosse G., Guglielmin M.,

16. Ingeman-Nielsen T., Isaksen K., Ishikawa M., Johansson M., Johannsson H., Joo A., Kaverin D., Kholodov A., Konstantinov P., Kröger T., Lambiel C., Lanckman J. P., Luo D., Malkova G., Meiklejohn I., Moskalenko N., Oliva M., Phillips M., Ramos M., Sannel A.B.K., Sergeev D., Seybold C., Skryabin P., Vasiliev A., Wu Q., Yoshikawa K., Zheleznyak M., Lantuit H. Permafrost is warming at a global scale. Nature communications. 2019, 10 (1): 264 p.

17. Boike J., Kattenstroth B., Abramova K., Bornemann N., Chetverova A., Fedorova I., Fröb K., Grigoriev M., Grüber M., Kutzbach L., Langer M., Minke M., Muster S., Piel K., Pfeiffer E.-M., Stoof G., Westermann S., Wischnewski K., Wille C., Hubberten H.-W. Baseline characteristicsof climate, permafrost and land cover from a new permafrost observatory in the Lena River Delta, Siberia (1998–2011). Biogeosciences. 2013, 10: 2105–2128.

18. Boike J., Nitzbon J., Anders K., Grigoriev M.N., Bolshiyanov D.Yu., Langer M., Lange S., Bornemann N., Morgenstern A., Schreiber P., Wille C., Chadburn S., Gouttevin I., Burke E.J., Kutzbach L. A 16-year record (2002–2017) of permafrost, active-layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern Siberia: an opportunity to validate remote-sensing data and land surface, snow, and permafrost models. Earth System Science Data. 2019, 11 (1): 261–299. https://doi.org/10.5194/essd-11-261-2019

19. García-García A., Cuesta-Valero F.J., Beltrami H., Smerdon J.E. Characterization of air and ground temperature relationships within the CMIP5 historical and future climate simulations. J. Geophys. Res. Atmos. 2019, 124: 3903–3929.

20. Hu G., Zhao L., Wu X., Li R., Wu T., Xie C., Qiao Y., Shi J., Li W., Cheng G. New Fourier-series-based analytical solution to the conduction–convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. Intern. J. Heat Mass

21. Transf. 2016, 95: 815–823.

22. Langer M., Westermann S., Muster S., Piel K., Boike J. The surface energy balance of a polygonal tundra site in northern Siberia – Part 2: Winter. The Cryosphere.

23. , 5: 509–524. https://doi.org/1010.5194/tc-5-509-2011.

24. Quante L., Willner S.N., Middelanis R., Levermann A. Regions of intensification of extreme snowfall under future warming. Scientific Reports. 2021, 11 (1): 16621. https://doi.org/10.1038/s41598-021-95979-4

25. Soden B.J., Held I.M. An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models. Jorn. Climate. 2006, 19: 3354–3360.

26. Studfiles: official site: Electronic data. Retrieved from: https://studfile.net/ (Last access: May 8, 2025).


Supplementary files

For citation: Fadeeva I.I., Duchkov A.A., Ayunov D.E. Thermal Regime of Permafrost in the Borehole Depending on the Snow Cover Thickness in the Area of the Polar Station “Samoilovsky Island” (Lena River Delta). Ice and Snow. 2025;65(3):432-446. https://doi.org/10.7868/S2412376525030066

Views: 15

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)