Automated Interpretation of Multi-Zone Space Images for Snow Depth Recognition: the Case of Western Yakutia
https://doi.org/10.7868/S2412376525030047
Abstract
About the Authors
S. V. KalinichevaRussian Federation
Yakutsk
A. N. Petrova
Russian Federation
Yakutsk
V. P. Semenov
Russian Federation
Yakutsk
References
1. Bulygina O.N., Korshunova N.N., Razuvaev V.N. Monitoring of snow cover on the territory of the Russian Federation. Trudy Gidrometeorologicheskogo nauchno-issledovatel’skogo centra Rossijskoj Federacii. Proceedings of the Hydrometeorological Research Center of the Russian Federation. 2017, 366: 87–96 [In Russian].
2. Eliseev A.V., Simakina T.E. Determining the height of snow cover from multispectral satellite images. Materialy 22-j Mezhdunarodnoj konferencii “Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa” (Moskva, 11–15 noyabrya 2024 goda). Proceedings of the 22nd International Conference “Modern Problems of Remote Sensing of the Earth from Space”. Moscow: Space Research Institute of the Russian Academy of Sciences, 2024: 245 p. https://doi.org/10.21046/22DZZconf-2024a [In Russian].
3. Kudryavtsev V.A. Temperatura vechnomerzloj tolshchi v predelah SSSR. The temperature of the permafrost layer within the USSR. Moscow: Publishing house of the USSR Academy of Sciences, 1954: 182 p. [In Russian].
4. Metody distancionnogo issledovaniya zemnoj poverhnosti: uchebno-metodicheskoe posobie. Methods of remote exploration of the Earth’s surface: an educational and methodologicalguide. Ulan-Ude: Izd-vo FGOU VPO, 2005: 88 p. [In Russian].
5. Scientific and Applied Handbook “Climate of Russia”: official site. Retrieved from: URL: http://aisori.meteo.ru/ClspR (Last access: June 1, 2025). [In Russian].
6. Pavlov A.V. Teploobmen pochvy s atmosferoj v severnyh i umerennyh shirotah territorii SSSR. Heat exchange of soil with atmosphere in the northern and temperate latitudes of the USSR territory. Yakutsk: Yakutsk book publishing house, 1975: 301 p. [In Russian].
7. Pavlov A.V. Teplofizika landshaftov. Thermal physics of landscapes. Novosibirsk: Nauka, 1979: 237 p. [In Russian].
8. Porkhaev G.V. Teplovoe vzaimodejstvie zdanij i sooruzhenij s vechnomerzlymi gruntami. Thermal interaction of buildings and structures with permafrost soils. Moscow: Nauka, 1970: 208 p. [In Russian].
9. Proskuryakova B.V. Ukazaniya po podgotovke grunta k razrabotke v zimnih usloviyah. Guidelines for preparing soil for development in winter conditions. Moscow: Bureau of technical assistance of the Gosselstroy Institute, 1956: 190 p. [In Russian].
10. Feldman G.M. Prognoz temperaturnogo rezhima gruntov i razvitiya kriogennyh processov. Forecast of the temperature regime of soils and the development of cryogenic processes. Novosibirsk: Nauka, 1977: 191 p. [In Russian].
11. Fiziko-geograficheskoe rajonirovanie SSSR. Physical-geographical zoning of the USSR edited by. Moscow: Moscow University Press, 1968: 576 p. [In Russian].
12. Shender N.I. Rekomendacii po prognozu temperaturnogo rezhima gruntov. Recommendations for forecasting soil temperature regime. Yakutsk: P.I. Melnikov Perma frost Institute SB RAS 1986: 57 p. [In Russian].
13. Shoshin E.L. Methods of remote measurement of snow cover characteristics. Vestnik kibernetiki. Proceedings in Cybernetics. 2021, 1 (41): 20–30. https://doi.org/10.34822/1999-7604-2021-1-20-30 [In Russian].
14. Adams M.S., Bühler Y., Fromm R. Multitemporal accuracy and precision assessment of unmanned aerial system photogrammetry for slope-scale snow depth maps in alpine terrain. Pure Application Geophysics. 2018, 175 (9): 3303–3324. https://doi.org/10.1007/s00024-017-1748-y
15. Bühler Y., Adams M.S., Bösch R., Stoffel A. Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations. The Cryosphere. 2016, 10 (3): 1075–1088. https://doi.org/10.5194/tc-10-1075-2016
16. Eberhard L.A., Sirguey P., Miller A., Marty M., Schindler K., Stoffel A., Bühler Y. Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping. The Cryosphere. 2021, 15: 69–94. https://doi.org/10.5194/tc-15-69-2021
17. Resources for ArcMap and migration support: Electronic data. Retrieved from: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources (Last access: May 7, 2025).
18. GISLAB. Geographic Information Systems and Remote Sensing: Electronic data. Retrieved from: https://gis-lab.info/qa/landsat-bandcomb.html (Last access: May 7, 2025).
19. Jacobs J.M., Hunsaker A.G., Sullivan F.B., Palace M., Burakowski E.A., Herrick C., Cho E. Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States. The Cryosphere. 2021, 15: 1485–1500. https://doi.org/10.5194/tc-15-1485-2021
20. Lievens H., Demuzere M., Marshall HP. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10: 4629. https://doi.org/10.1038/s41467-019-12566-y
21. Toleubay Zh.B., Usalinov E.B., Shmatov B.B. Model for calculating snow cover characteristics based on remote sensing data. Science Bulletin of the Kazakh AgroTechnical University named after S. Seifullin. 2021, 4 (111): 44–49. https://doi.org/10.51452/kazatu.2021.4(111).782
Supplementary files
For citation: Kalinicheva S.V., Petrova A.N., Semenov V.P. Automated Interpretation of Multi-Zone Space Images for Snow Depth Recognition: the Case of Western Yakutia. Ice and Snow. 2025;65(3):411-421. https://doi.org/10.7868/S2412376525030047
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)











.png)
.png)





.png)




