Structure Stability of External Mass Turnover Fields of the Djankuat Glacier
https://doi.org/10.7868/S2412376525030029
Abstract
About the Authors
A. M. ChekhovskikhRussian Federation
Moscow
V. V. Popovnin
Russian Federation
Moscow
A. S. Gubanov
Russian Federation
Moscow
References
1. Voloshina A.P. Variations of external mass-exchange of the Polar Urals’ glaciers in 1959/60–1976/77. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1981, 41: 149–162 [In Russian].
2. Groswald M.G., Krenke A.N., Vinogradov O.N., Markin V.A., Psareva T.V., Razumeyko N.G., Sukhodrovsky V.L. Oledenenie Zemli Frantsa-Iosifa. Rezultaty issledovaniy po programme MGG. Franz Josef Land glaciation. Research results by IGY programme. Moscow: Nauka, 1973: 348 p.[In Russian].
3. Dyurgerov M.B. Computations of mass balance in glacier systems. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1986, 57: 8–15 [In Russian].
4. Dyurgerov M.B. Monitoring balansa massy gornykh lednikov. Mass balance monitoring on alpine glaciers. Moscow: Nauka, 1993: 127 p. [In Russian].
5. Lednik Dzhankuat (Tsentralnyy Kavkaz). Djankuat Glacier (Central Caucasus). Leningrad: Hydrometeoizdat, 1978: 184 p. [In Russian].
6. Lednik Marukh (Zapadnyy Kavkaz). Marukh Glacier (Western Caucasus). Leningrad: Hydrometeoizdat, 1988: 254 p. [In Russian].
7. Kunakhovich M.G. Annual mass balance formation on a flat summit glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1989, 67: 163–169 [In Russian].
8. Kunakhovich M.G. Podobiye poley vneshnego massoobmena i raschot balansa massy gornykh lednikov. Simularity of external mass turnover fields and mass balance calculations of alpine glaciers. PhD thesis. Moscow: IGRAS, 1991: 70 p. [In Russian].
9. Menshutin V.M. Mass-balance of the Marukh glacier and variability of its components. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1977, 31: 38–44 [In Russian].
10. Oleynikov A.D., Volodicheva N.A. Recent trends of snow avalanche regime in the Central Caucasus (Elbrus region as an example). Led i Sneg. Ice and Snow. 2019, 59 (2): 191–200. https://doi.org/10.15356/2076-6734-2019-2-400 [In Russian]
11. Pastukhov V.G. Polnyy massoobmen lednika Dzhankuat. Full mass exchange of the Djankuat Glacier. Moscow: Moscow University Press, 2011: 185 p. [In Russian].
12. Petrakov D.A. Ustoychivost poley vneshnego massoobmena gornogo lednika. Stability of the fields of external mass exchange of an alpine glacier. PhD thesis. Moscow: MSU, 2000: 218 p. [In Russian].
13. Petrakov D.A., Popovnin V.V. Accumulation field of an alpine glacier and its stability over time. Kriosfera Zemli. Earth’s Cryosphere. 2000, 2 (4): 67–76 [In Russian].
14. Popovnin V.V. Byudzhetnaya evolyutsiya reprezentativnogo lednika Dzhankuat (Tsentralnyy Kavkaz). Budget evolution of the Djankuat Glacier, representative of the Central Caucasus. PhD thesis. Moscow: MSU, 1989: 305 p. [In Russian].
15. Popovnin V.V. Accumulation field of an alpine glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2000, 88: 16–29 [In Russian].
16. Popovnin V.V., Sergievskaya Ya.E. On a feedback of the share of avalanche alimentation with a glacier accumulation. Led i Sneg. Ice and Snow. 2018, 58 (4): 437–447. https://doi.org/10.15356/2076-6734-2018-4-437-447 [In Russian].
17. Popovnin V.V., Pylaeva T.V. Avalanche feeding of the Djankuat Glacier. Led i Sneg. Ice and Snow. 2015, 55 (2): 21–32 https://doi.org/10.15356/2076-6734-2015-2-21-32 [In Russian].
18. Chekhovskih A.M. Ustoychivost poley akkumulyatsii i ablyatsii na lednike Dzhankuat. Stability of accumulation and ablation fields of the Djankuat Glacier. MS thesis.
19. Moscow: MSU, 2021: 84 p. [In Russian].
20. Bozhinskiy A.N., Krass M.S., Popovnin V.V. Role of debris cover in the thermal physics of glaciers. J. Glaciology. 1986, 32 (111): 255–266.
21. Dadic R., Mott R., Lehning M., Burlando P. Wind influence on snow depth distribution and accumulation over glaciers. J. Geophys. Res. Earth Surf. 2010, 115: F01012. https://doi.org/10.1029/2009JF001261
22. Florentine C., Harper J., Fagre D., Moore J., Peitzsch E. Local topography increasingly influences the mass balance of a retreating cirque glacier. The Cryosphere.2018, 12: 2109–2122. https://doi.org/10.5194/tc-12-2109-2018
23. Eyles N., Rogerson R.J. A framework for the investigation of medial moraine formation: Austerdalsbreen, Norway, and Berendon Glacier, British Columbia, Canada. J. Glaciology. 1978, 20 (82): 99–113.
24. Hodgkins R., Cooper R., Wadham J., Tranter M. Interannual variability in the spatial distribution of winter accumulation at a high-Arctic glacier (Finsterwalderbreen, Svalbard), and its relationship with topography. Annals of Glaciology. 2005, 42: 243–248. https://doi.org/10.3189/172756405781812718
25. Hoinkes H.C. Glacial meteorology. In: Solid Earth and Interface Phenomena. Research in Geophysics. 1964, 2: 391–424.
26. McGrath D., Sass L., O’Neel S., Arendt A., Wolken G., Gusmeroli A., Kienholz C., McNeil C. End-of-winter snow depth variability on glaciers in Alaska. J. Geophys. Res. Earth Surf. 2015, 120 (8): 1530–1550. https://doi.org/10.1002/2015JF003539
27. Popovnin V., Gubanov A., Lisak V., Toropov P. Recent mass balance anomalies on the Djankuat Glacier, Northern Caucasus. Atmosphere. 2024, 15 (1): 107–129. https://doi.org/10.3390/atmos15010107
28. Rets E.P., Popovnin V.V., Toropov P.A., Smirnov A.M., Tokarev I.V., Chizhova J.N., Budantseva N.A., Vasil’chuk Yu.K., Kireeva M.B., Ekaykin A.A., Veres A.N., Aleynikov A.A., Frolova N.L., Tsyplenkov A.S., Poliukhov A.A., Chalov S.R., Aleshina M.A., Kornilova E.D. Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and me teorological observations and stable isotope sampling results during 2007–2017. Earth System Science Data. 2019, 11 (3): 1463–1481. https://doi.org/10.5194/essd-11-1463-2019
29. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century. International Journal of Climatology. 2019, 39 (12): 4703–4720. https://doi.org/10.1002/joc.6101
30. Verhaegen Y., Rybak O., Popovnin V.V., Huybrechts P. Quantifying supraglacial debris‐related melt‐altering effects on the Djankuat glacier, Caucasus, Russian Feder
31. ation. J. Geophys. Res. Earth Surf. 2024, 129 (4): e2023JF007542. https://doi.org/10.1029/2023JF007542
32. Walmsley A.P.U. Long-term observations of snow spatial distributions at Hellstugubreen and Gråsubreen. MS thesis. Norway, Oslo, 2015. 141 p.
33. WGMS (2023): Global glacier change bulletin No. 5 (2020–2021). Zurich, Switzerland: ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, 2023: 134 p. https://doi.org/10.5904/wgms-fog-2023-09
Supplementary files
For citation: Chekhovskikh A.M., Popovnin V.V., Gubanov A.S. Structure Stability of External Mass Turnover Fields of the Djankuat Glacier. Ice and Snow. 2025;65(3):378-396. https://doi.org/10.7868/S2412376525030029
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)











.png)
.png)





.png)




