Structure Stability of External Mass Turnover Fields of the Djankuat Glacier


https://doi.org/10.7868/S2412376525030029

Full Text:




Abstract

The regularity and variability of accumulation, ablation, and mass balance distribution on the Djankuat Glacier were investigated to assess the spatio-temporal stability of its external mass turnover fields. A 2019/20–2023/24 time span, characterized by varying degrees of abnormality in the annual budget parameters, was selected as a case pentad for testing. Interannual differences in snow accumulation and melting patterns affect the spatial structure of the fields – obvious shifts of maxima and minima areas are noticed, inter alia. Nevertheless, persistent structural similarities across years indicate a certain degree of temporal and spatial stability. The present analysis employs the field similarity hypothesis originally developed by V.V. Popovnin (1989), which evaluates the variability of the functional relationship between gridded balance parameters and those averaged either over corresponding alti-morphological zones or over the entire glacier. For each grid node, variation coefficients of normalized values are calculated, followed by correlation analysis between the normalized node values and the corresponding zonal and glacier-wide averages. Concerned are both year-to-year correlations and the stability of annual fields relative to the long-term average pattern. Eventually the plots with the highest and lowest stability indices are identified within the glacier area. The alti-morphological zonation is found to align more consistently with the similarity hypothesis than glacier-wide averages. Among the three studied mass balance parameters, the ablation field demonstrates the greatest stability, whereas the accumulation field exhibits the highest variability. Correlations between annual and multi-year fields exceed those between two arbitrary years. Obtained results can be applied for indirect mass-balance plotting and calculations as well as for predicting accumulation, ablation and overall mass balance patterns.

About the Authors

A. M. Chekhovskikh
Lomonosov Moscow State University
Russian Federation
Moscow


V. V. Popovnin
Lomonosov Moscow State University
Russian Federation
Moscow


A. S. Gubanov
Lomonosov Moscow State University
Russian Federation
Moscow


References

1. Voloshina A.P. Variations of external mass-exchange of the Polar Urals’ glaciers in 1959/60–1976/77. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1981, 41: 149–162 [In Russian].

2. Groswald M.G., Krenke A.N., Vinogradov O.N., Markin V.A., Psareva T.V., Razumeyko N.G., Sukhodrovsky V.L. Oledenenie Zemli Frantsa-Iosifa. Rezultaty issledovaniy po programme MGG. Franz Josef Land glaciation. Research results by IGY programme. Moscow: Nauka, 1973: 348 p.[In Russian].

3. Dyurgerov M.B. Computations of mass balance in glacier systems. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1986, 57: 8–15 [In Russian].

4. Dyurgerov M.B. Monitoring balansa massy gornykh lednikov. Mass balance monitoring on alpine glaciers. Moscow: Nauka, 1993: 127 p. [In Russian].

5. Lednik Dzhankuat (Tsentralnyy Kavkaz). Djankuat Glacier (Central Caucasus). Leningrad: Hydrometeoizdat, 1978: 184 p. [In Russian].

6. Lednik Marukh (Zapadnyy Kavkaz). Marukh Glacier (Western Caucasus). Leningrad: Hydrometeoizdat, 1988: 254 p. [In Russian].

7. Kunakhovich M.G. Annual mass balance formation on a flat summit glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1989, 67: 163–169 [In Russian].

8. Kunakhovich M.G. Podobiye poley vneshnego massoobmena i raschot balansa massy gornykh lednikov. Simularity of external mass turnover fields and mass balance calculations of alpine glaciers. PhD thesis. Moscow: IGRAS, 1991: 70 p. [In Russian].

9. Menshutin V.M. Mass-balance of the Marukh glacier and variability of its components. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1977, 31: 38–44 [In Russian].

10. Oleynikov A.D., Volodicheva N.A. Recent trends of snow avalanche regime in the Central Caucasus (Elbrus region as an example). Led i Sneg. Ice and Snow. 2019, 59 (2): 191–200. https://doi.org/10.15356/2076-6734-2019-2-400 [In Russian]

11. Pastukhov V.G. Polnyy massoobmen lednika Dzhankuat. Full mass exchange of the Djankuat Glacier. Moscow: Moscow University Press, 2011: 185 p. [In Russian].

12. Petrakov D.A. Ustoychivost poley vneshnego massoobmena gornogo lednika. Stability of the fields of external mass exchange of an alpine glacier. PhD thesis. Moscow: MSU, 2000: 218 p. [In Russian].

13. Petrakov D.A., Popovnin V.V. Accumulation field of an alpine glacier and its stability over time. Kriosfera Zemli. Earth’s Cryosphere. 2000, 2 (4): 67–76 [In Russian].

14. Popovnin V.V. Byudzhetnaya evolyutsiya reprezentativnogo lednika Dzhankuat (Tsentralnyy Kavkaz). Budget evolution of the Djankuat Glacier, representative of the Central Caucasus. PhD thesis. Moscow: MSU, 1989: 305 p. [In Russian].

15. Popovnin V.V. Accumulation field of an alpine glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2000, 88: 16–29 [In Russian].

16. Popovnin V.V., Sergievskaya Ya.E. On a feedback of the share of avalanche alimentation with a glacier accumulation. Led i Sneg. Ice and Snow. 2018, 58 (4): 437–447. https://doi.org/10.15356/2076-6734-2018-4-437-447 [In Russian].

17. Popovnin V.V., Pylaeva T.V. Avalanche feeding of the Djankuat Glacier. Led i Sneg. Ice and Snow. 2015, 55 (2): 21–32 https://doi.org/10.15356/2076-6734-2015-2-21-32 [In Russian].

18. Chekhovskih A.M. Ustoychivost poley akkumulyatsii i ablyatsii na lednike Dzhankuat. Stability of accumulation and ablation fields of the Djankuat Glacier. MS thesis.

19. Moscow: MSU, 2021: 84 p. [In Russian].

20. Bozhinskiy A.N., Krass M.S., Popovnin V.V. Role of debris cover in the thermal physics of glaciers. J. Glaciology. 1986, 32 (111): 255–266.

21. Dadic R., Mott R., Lehning M., Burlando P. Wind influence on snow depth distribution and accumulation over glaciers. J. Geophys. Res. Earth Surf. 2010, 115: F01012. https://doi.org/10.1029/2009JF001261

22. Florentine C., Harper J., Fagre D., Moore J., Peitzsch E. Local topography increasingly influences the mass balance of a retreating cirque glacier. The Cryosphere.2018, 12: 2109–2122. https://doi.org/10.5194/tc-12-2109-2018

23. Eyles N., Rogerson R.J. A framework for the investigation of medial moraine formation: Austerdalsbreen, Norway, and Berendon Glacier, British Columbia, Canada. J. Glaciology. 1978, 20 (82): 99–113.

24. Hodgkins R., Cooper R., Wadham J., Tranter M. Interannual variability in the spatial distribution of winter accumulation at a high-Arctic glacier (Finsterwalderbreen, Svalbard), and its relationship with topography. Annals of Glaciology. 2005, 42: 243–248. https://doi.org/10.3189/172756405781812718

25. Hoinkes H.C. Glacial meteorology. In: Solid Earth and Interface Phenomena. Research in Geophysics. 1964, 2: 391–424.

26. McGrath D., Sass L., O’Neel S., Arendt A., Wolken G., Gusmeroli A., Kienholz C., McNeil C. End-of-winter snow depth variability on glaciers in Alaska. J. Geophys. Res. Earth Surf. 2015, 120 (8): 1530–1550. https://doi.org/10.1002/2015JF003539

27. Popovnin V., Gubanov A., Lisak V., Toropov P. Recent mass balance anomalies on the Djankuat Glacier, Northern Caucasus. Atmosphere. 2024, 15 (1): 107–129. https://doi.org/10.3390/atmos15010107

28. Rets E.P., Popovnin V.V., Toropov P.A., Smirnov A.M., Tokarev I.V., Chizhova J.N., Budantseva N.A., Vasil’chuk Yu.K., Kireeva M.B., Ekaykin A.A., Veres A.N., Aleynikov A.A., Frolova N.L., Tsyplenkov A.S., Poliukhov A.A., Chalov S.R., Aleshina M.A., Kornilova E.D. Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and me teorological observations and stable isotope sampling results during 2007–2017. Earth System Science Data. 2019, 11 (3): 1463–1481. https://doi.org/10.5194/essd-11-1463-2019

29. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century. International Journal of Climatology. 2019, 39 (12): 4703–4720. https://doi.org/10.1002/joc.6101

30. Verhaegen Y., Rybak O., Popovnin V.V., Huybrechts P. Quantifying supraglacial debris‐related melt‐altering effects on the Djankuat glacier, Caucasus, Russian Feder

31. ation. J. Geophys. Res. Earth Surf. 2024, 129 (4): e2023JF007542. https://doi.org/10.1029/2023JF007542

32. Walmsley A.P.U. Long-term observations of snow spatial distributions at Hellstugubreen and Gråsubreen. MS thesis. Norway, Oslo, 2015. 141 p.

33. WGMS (2023): Global glacier change bulletin No. 5 (2020–2021). Zurich, Switzerland: ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, 2023: 134 p. https://doi.org/10.5904/wgms-fog-2023-09


Supplementary files

For citation: Chekhovskikh A.M., Popovnin V.V., Gubanov A.S. Structure Stability of External Mass Turnover Fields of the Djankuat Glacier. Ice and Snow. 2025;65(3):378-396. https://doi.org/10.7868/S2412376525030029

Views: 18

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)