The Future Glacial Cycle and Its Reflection in the Glacial Cycles of the Late Pleistocene


https://doi.org/10.31857/S2076673425020095

Full Text:




Abstract

As a result of applying the principle of symmetry and the similarity property to the glacial cycles of the Late Pleistocene, an analogy was found in the climate dynamics of the Milankovich glacial cycles. This made it possible to outline the future glacial cycle, determine its configuration and duration.

About the Authors

N. V. Vakulenko
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Russian Federation
Moscow


D. M. Sonechkin
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Bolshakov V.A. Study of parameters of the middle Pleistocene transition by comparison of the isotope-oxygen record LR04 with the orbital-climatic diagram. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2013, 449 (1): 338–341 [In Russian].

2. Vakulenko N.V., Sonechkin D.M., Ivashchenko N.N., Kotlyakov V.M. On periods of multiplying bifurcation of early Pleistocene glacial cycles. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2011, 436 (4): 1541–1544 [In Russian].

3. Vakulenko N.V., Kotlyakov V.M., Monin A.S., Sonechkin D.M. Significant features of the calendar of the late Pleistocene glacial cycles. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2007, 43 (6): 773–782 [In Russian].

4. Vakulenko N.V., Kotlyakov V.M., Monin A.S., Sonechkin D.M. Symmetry of Late Pleistocene glacial cycles in records of the Antarctic Vostok and DOME C stations. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2005, 407 (1): 111–114 [In Russian].

5. Vakulenko N.V., Sonechkin D.M., Kotlyakov V.M. Increase in the global climate variability from about 400 ka BP until present. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2014, 456 (5): 600–603. https://doi.org/10.7868/S0869565214170277 [In Russian].

6. Barth A.M., Clark P.U., Bill N.S., He F., Pisias N.G. Climate evolution across the Mid-Brunhes Transition. Climate of the Past. 2018, 14: 2071–2087. https://doi.org/10.5194/cp-14-2071-2018

7. Berger W.H., Wefer G. On the dynamics of the ice ages: stage-11 paradox, mid-Brunhes climate shift, and 100- kyr cycle. Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question. 2003, 137: 41–59. https://doi.org/10.1029/137GM04

8. Crucifix M., Loutre F., Berger A. The Climate Response to the Astronomical Forcing. Space Science Reviews. 2007, 125 (1–4): 213–226. https://doi.org/10.1007/978-0-387-48341-2_17

9. Hobart B., Lisiecki L.E., Rand D., Lee T., Lawrence C.E. Late Pleistocene 100-kyr glacial cycles paced by precession forcing of summer insolation. Nature Geoscience. 2023, 16: 717–722. https://doi.org/10.1038/s41561-023-01235-x

10. Imbrie J., Imbrie J.Z. Modelling the climatic response to orbital variations. Science. 1980, 207: 943–953.

11. Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On bifurcations inducing glacial cycle lengthening during pliocene/pleistocene epoch. International Journ. of Bifurcation and Chaos. 2014, 24 (8): 1440018. https://doi.org/10.1142/S0218127414400185

12. Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On the nature of the Pliocene/Pleistocene glacial cycle lengthening. Global Perspectives on Geography. 2013, 1: 9–20.

13. Kawamura K., Aoki S., Nakazawa T., Abe-Ouchi A., Saito F. Timing and duration of the last five interglacial periods from an accurate age model of the Dome Fuji Antarctic ice core. American Geophysical Union, Fall Meeting. 2010: PP43D-04.

14. Laskar J., Joutel F., Gastineau M., Correia A.C.M., Levrard B. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics. 2004, 428: 261–285.

15. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed bentic δ18O records. Paleoceanology. 2005, 20: PA1003. https://doi.org/10.1029/2004PA001071

16. Loutre M.F., Berger A. Marine Isotope Stage 11 as an analogue for the present interglacial. Global and Planetary Change. 2003, 36 (3): 209–217. https://doi.org/10.1016/S0921-8181(02)00186-8

17. McManus J.F., Oppo D.W., Cullen J.L. Marine isotope stage 11 (MIS 11): analog for Holocene and future climate? In: A.W. Droxler, R.Z. Poore, L.H. Burckle. Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11. Question. 2003, 137: 69–85.

18. Rial J.A. Pacemaking the ice ages by frequency modulation of Earth’s orbital eccentricity. Science. 1999, 285: 564–568.

19. Snyder C. Evolution of global temperature over the past two million years. Nature. 2016, 38: 226–228. https://doi.org/10.1038/nature19798

20. Talento S., Ganopolski A. Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles. Earth System Dynamics. 2021, 12: 1275–1293. https://doi.org/10.5194/esd-12-1275-2021

21. Tzedakis P.C., Channell J.E.T., Hodell D.A., Kleiven H.F., Skinne L.C. Determining the natural length of the current interglacial. Nature Geoscience. Letters. 2012a, 5 (2): 138–141. https://doi.org/10.1038/NGEO1358

22. Tzedakis P.C., Crucifix M., Mitsui T., Wolff E.W. A simple rule to determine which insolation cycles lead to interglacials. Nature. 2017, 542 (7642): 427–432. https://doi.org/10.1038/nature21364

23. Tzedakis P.C., Hodell D.A., Nehrbass-Ahles С., Mitsui T., Wolff E.W. Marine Isotope Stage 11c: An unusual. Quaternary Science Reviews. 2022, 284: 107493. https://doi.org/10.1016/j.quascirev.2022.107493

24. Tzedakis P.C. The MIS 11 – MIS 1 analogy, southern European vegetation, atmospheric methane and the “early anthropogenic hypothesis”. Climate of the Past. 2010, 6: 131–144. https://doi.org/10.5194/cp-6-131-2010

25. Tzedakis P.C., Wolff E.W., Skinner L.C., Brovkin V., Hodell D.A., McManus J.F., Raynaud D. Can we predict the duration of an interglacial? Climate of the Past. 2012b, 8: 1473–1485. https://doi.org/10.5194/cp-8-1473-2012

26. Tziperman E., Gildor H. On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography. 2003, 18 (1): 1001. https://doi.org/10.1029/2001PA000627

27. Tziperman E., Raymo M.E., Huybers P., Wunsch C. Consequences of pacing the Pleistocene 100-kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography. 2006, 21: PA4206. https://doi.org/10.1029/2005PA001241

28. Witkowski C.R., von der Heydt A.S., Valdes P.J., van der Meer M.T.J., Schouten S., Sinninghe Damsté J.S. Continuous sterane and phytane δ13C record reveals a substantial pCO2 decline since the mid-Miocene. Nature Communications. 2024, 15 (1): 5192. https://doi.org/10.1038/s41467-024-47676-9


Supplementary files

For citation: Vakulenko N.V., Sonechkin D.M. The Future Glacial Cycle and Its Reflection in the Glacial Cycles of the Late Pleistocene. Ice and Snow. 2025;65(2):315-326. https://doi.org/10.31857/S2076673425020095

Views: 105

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)