Consistency of the orbital chronologies derived for Vostok and EPICA DC ice cores based on the dependence of ice air content on local insolation
https://doi.org/10.31857/S2076673425010017
Abstract
at the site of ice formation. By revisiting two equally accurate TAC records obtained at the Vostok and EPICA DC drilling sites, we attempt a careful assessment of the contributions of different natural components
(orbital and nonorbital, global and local), and of experimental uncertainties to the total variance of the TAC data. We show that a major contribution (~74 % of the total variance) is made by the nonthermal variations of the closeoff porosity, which includes the local insolation signal (~44 %) and the nonorbital variations of the firn properties related to changes in weather conditions (~30 %). The insolation signal has been used to produce TACbased timescales for the EPICA DC and Vostok ice cores (Raynaud et al., 2007; Lipenkov et al., 2011). In this paper, in order to better estimate the uncertainties of this dating technique, we compare the individual TAC timescales obtained for the two ice cores in their overlap age interval (150–390 ka) assuming that the insolationrelated variations should be the same and synchronous at the two sites, which sit at similar latitudes. We prove that CWT analysis is the most reliable technique for tuning the experimental TAC records to their local summer insolation targets (ISI). It provides excellent reproducibility of the deduced TAC timescales (0.3±0.2 ka) and good synchronization of the records obtained from the different ice cores even though the scattering of the TAC data is large. Finally, using the same CWT technique we come to the construction of the coherent TACbased orbital timescales for Vostok and EDC ice cores. Comparison of the TAC timescales with the optimized chronologies AICC2012 and AICC2023 for the Vostok and EDC cores showed that their discrepancy, as a rule, does not exceed 2 ka, which is consistent with both the standard error of the TACbased dating method (±2.1 ka) and the standard errors of the AICC2012 (±1.9…4.8 ka) and AICC2023 (±0.8…2.6 ka) reference chronologies themselves. We show that the increase in the uncertainty of orbital dating can be related to the natural weakening of variations of local insolation in some periods of time. The decrease in amplitude of the ISI variations implies reduction of the insolation signal and increase of the noise/signal ratio in the air content record. We did not find high amplitude shortterm (millennial scale) nonorbital TAC variations that were synchronous in both the ice cores that were studied. On the other hand, some of these variations are well reproduced by measurements in the replicate ice cores drilled several tens of metres apart, which confirms their significance and link with changes in the local conditions of ice formation. Based on our study, we argue that applying a multicore and dualproxy (TAC and O2/N2) approach would be advantageous for comprehensive investigation of the uncertainties associated with the combined use of TAC and O2/N2 records for orbital dating of existing (Vostok, EDC, Dome Fuji) and future ice cores, including those which will be drilled in central Antarctica as part of the Oldest Ice projects.
About the Authors
V. A. KhomyakovaRussian Federation
Saint Petersburg
N. A. Tebenkova
Russian Federation
Saint Petersburg
V. Ya. Lipenkov
Russian Federation
Saint Petersburg
D. Raynaud
France
Grenoble
References
1. Skakun A.A., Lipenkov V.Ya. Assesing the uncertainties of an ice core time scale based on orbital tuning of air content records: a case study of the Dome Fuji (Antarctica) ice core. Problems of Arctica and Antarctica. 2016, 4 (110): 14–29 [In Russian].
2. Bazin L., Landais A., Lemieux-Dudon B., Toyé Mahamadou Kele H., Veres D., Parrenin F., Martinerie P., Ritz C., Capron E., Lipenkov V., Loutre M.-F., Raynaud D., Vinther B., Svensson A., Rasmussen S.O., Severi M., Blunier T., Leuenberger M., Fischer H., Masson-Delmotte V., Chappellaz J., Wolff E. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC<sub>2</sub>0<sub>12</sub>): 120–800 ka, Climate Past. 2013, 9: 1715–1731. doi: 10.5194/cp-9-1715-2013
3. Bender M. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth and Planetary Science Letters. 2002, 204: 275–289.
4. Bouchet M., Landais A., Grisart A., Parrenin F., Prié F., Jacob R., Fourré E., Capron E., Raynaud D., Lipenkov V.Y., Loutre M.-F., Extier T., Svensson A., Legrain E., Martinerie P., Leuenberger M., Jiang W., Ritterbusch F., Lu Z.-T., and Yang G.-M. The Antarctic Ice Core Chronology 2023 (AICC<sub>2</sub>0<sub>23</sub>) chronological framework and associated timescale for the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core, Climate Past. 2023, 19: 2257–2286. doi: 10.5194/cp-19-2257-2023
5. EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature. 2004, 429: 623–628.
6. Huybers P. Early Pleistocene glacial cycles and the interated summer insolation forcing. Science. 2006, 313 (5786): 508–511. doi: 10.1126/science.1125249
7. Kawamura K., Parrenin F., Lisiecki L., Uemura R., Vimeux F., Severinghaus J.P., Hutterli M.A., Nakazawa T., Aoki S., Jouzel J., Raymo M.E., Matsumoto K., Nakata H., Motoyama H., Fujita S., Goto-Azuma K., Fujii Y., Watanabe O. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360 000 years. Nature. 2007, 448: 912–916.
8. Landais A., Dreyfus G., Capron E., Pol K., Loutre M.-F., Raynaud D., Lipenkov V.Y., Arnaud L., Masson-Delmotte V., Paillard D., Jouzel J., Leuenberger M. Towards orbital dating of the EPICA Dome C ice core using O<sub>2</sub>/N<sub>2</sub> Climate Past. 2012, 8: 191–203. doi: 10.5194/cp-8-191-2012
9. Laskar J., Robutel P., Joutel F., Gastineau M., Correia A.C.M., Levrard B. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics. 2004, 428: 261–285. doi: 10.1051/0004-6361:20041335
10. Lemieux-Dudon B., Blayo E., Petit J.R., Waelbroeck C., Svensson A., Ritz C., Barnola J.M., Narcisi B.M., Parrenin F. Consistent dating for Antarctic and Greenland ice cores, Quaternary Science Reviews. 2010, 29: 8–20. doi: 10.1016/J.QUASCIREV.2009.11.010
11. Lipenkov V., Candaudap F., Ravoir J., Dulac E., Raynaud D. A new device for air content measurements in polar ice. Journ. of Glaciology. 1995, 41 (138): 423–429.
12. Lipenkov V.Ya., Raynaud D., Loutre M.F., Duval P. On the potential of coupling air content and O<sub>2</sub>/N<sub>2</sub> from trapped air for establishing an ice core chronology tuned on local insolation. Quaternary Science Reviews. 2011, 30: 3280–3289. doi: 10.1016/j.quascirev.2011.07.013
13. Martinerie P., Raynaud D., Etheridge D.M., Barnola J.-M., Mazaudier D. Physical and climatic parameters which influence the air content in polar ice. Earth and Planetary Science Letters. 1992, 112: 1–13.
14. Martinerie P., Lipenkov V.Ya., Raynaud D., Chappellaz J., Barkov N.I., Lorius C. Air content paleo record in the Vostok ice core (Antarctica): A mixed record of climatic and glaciological parameters. Journal of Geophysical Research. 1994, 99 (D5): 10565–10576.
15. Martinerie P., Lipenkov V., Raynaud D. Correction of the air content measurements in polar ice for the effect of cut bubbles at the surface of the sample. Journ. of Glaciology. 2007, 36 (124): 299–303.
16. Mélice, J.L., Servain J. The tropical Atlantic meridional SST gradient index and its relationship with the SOI, NAO and Southern Ocean. Journ. of Climate Dynamics. 2003, 20 (5): 447–464. doi: 10.1007/s00382-002-0289-x
17. Parrenin F., Barnola J.-M., Beer J., Blunier T., Castellano E., Chappellaz J., Dreyfus G., Fischer H., Fujita S., Jouzel J., Kawamura K., Lemieux-Dudon B., Loulergue L., Masson-Delmotte V., Narcisi B., Petit J.-R., Raisbeck G., Raynaud D., Ruth U., Schwander J., Severi M., Spahni R., Steffensen J.P., Svensson A., Udisti R., Waelbroeck C., Wolff E. The EDC<sub>3</sub> chronology for the EPICA Dome C ice core. Climate Past. 2007, 3: 485–497.
18. Parrenin F., Bazin L., Buizert C., Capron E., Chowdry Beeman J., Corrick E., Drysdale R., Kawamura K., Landais A., Mulvaney R., Oyabu I., Rasmussen S. The Paleochrono probabilistic model to derive a consistent chronology for several paleoclimatic sites. EGUsphere, 2021: 21–822. doi: 10.5194/egusphere-egu21-822
19. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delague G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Ya., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature. 1999, 399 (6735): 429–436.
20. Raynaud D., Lipenkov V.Ya., Lemieux-Dudon B., Duval P., Loutre M.-F., Lhomme N. The local insolation signature of air content in Antarctic ice. A new step toward an absolute dating of ice records. Earth and Planetary Science Letters. 2007, 26: 337–349.
21. Raynaud D., Yin Q., Capron E., Wu Z., Parrenin F., Berger A., Lipenkov V. Local summer temperature changes over the past 440 ka revealed by the total air content in the Antarctic EPICA Dome C ice core, Climate Past. 2024, 20: 1269–1282. doi: 10.5194/cp-20-1269-2024
22. Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Ya. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica). In: Ed. T. Hondoh. Physics of ice core records V. 2. Sapporo: Hokkaido University Press, 2009, 2: 167–194.
23. Veres D., Bazin L., Landais A., Toye Mahamadou Kele H., Lemieux-Dudon B., Parrenin F., Martinerie P., Blayo E., Blunier T., Capron E., Chappellaz J., Rasmussen S., Severi M., Svensson A., Vinther B., and Wolff E. The Antarctic ice core chronology (AICC<sub>2</sub>0<sub>12</sub>): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Climate Past. 2013, 9: 1733–1748. doi: 10.5194/cp-9-1733-2013
Supplementary files
For citation: Khomyakova V.A., Tebenkova N.A., Lipenkov V.Y., Raynaud D. Consistency of the orbital chronologies derived for Vostok and EPICA DC ice cores based on the dependence of ice air content on local insolation. Ice and Snow. 2025;65(1):7-20. https://doi.org/10.31857/S2076673425010017
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)