Study of the structure and chemical composition of shallow ice core from the Ushkovsky volcano


https://doi.org/10.31857/S2076673424040069

Full Text:




Abstract

The chemical composition (Na+, NH4+, K+, Mg2+, Ca2+, F−, Cl−, NO3− and SO42−) of an ice core from the Ushkovsky volcano was studied. A shallow (13.85 m) core was drilled in the fall of 2022 in the Gorshkov crater. The majority of the core (56%) consists of infiltration ice, formed by the penetration and subsequent freezing of liquid water in the firn layer. Melting, induced by an increase in the radiation balance in the region, is forced by volcanic eruption products deposited on the glacier’s surface. Part of the chemical record is disrupted by meltwater. Frequent large stochastic events (volcanic eruptions and Siberian wildfires) add further complexity to the interpretation of the paleosignal. Based on the nature of the obtained concentration records, we identified three groups of ions with different primary sources and assessed the role of leaching in their distribution within the glacier. The source of ions subject to migration due to leaching (SO42−, F−, Ca2+ and Mg2+) is volcanic activity; this process has a minimal impact on chemical markers of forest vegetation and biomass burning (NH4+ and NO3−), and the impact of leaching on the group of marine aerosols (Cl−, Na+ and K+) could not be assessed within this study. Thus, despite the contribution of various processes to the formation of the chemical record in the Ushkovsky glacier, the concentration profiles of the main ions can be used to reconstruct the environmental conditions in the region.


About the Authors

M. A. Vorobyev
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


S. S. Kutuzov
School of Earth Sciences, The Ohio State University, Columbus
United States
Columbus


M. M. Vinogradova
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


A. G. Khairedinova
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


Yu. N. Chizhova
Institute of Geography, Russian Academy of Sciences, Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences
Russian Federation
Moscow


V. N. Mikhalenko1
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Malik N.A. Ashes from Kamchatka volcano eruptions (2006–2013): composition, mass, and water- soluble complex. Extended asbtract’s of candidate’s dissertation in geology and mineralogy. PhD-tesis. Petropavlovsk-Kamchatskii: Institut Vulkanol. Seismol. DVO RAN, 2019: 28 p. [In Russian].

2. Gorbach N.V., Philosofova T.M., Mikhalenko V.N. Identification of tephra horizons in the glacier at the top of the Ushkovsky volcano (Kamchatka) by analyzing the chemical composition of volcanic glass in the ash particles. Led i Sneg. Ice and Snow. 2024, 64 (1): 066–080. http://doi.org/10.31857/S2076673424010053 [In Russian].

3. Primak T.I. O lesny`x pozharax v Kamchatskom krae. Regional`ny`e problemy` razvitiya Dal`nego Vostoka Rossii i Arktiki: tezisy` dokladov II Nacional`noj (Vserossijskoj) nauchno-prakticheskoj konferencii “Moiseevskie chteniya”, posvyashhennoj pamyati kamchatskogo uchenogo R.S. Moiseeva. Kamchatka’s forest fires. Regional problems of the development of the Far East Russia and Arctic: Abstracts of the 2th National (AllRussian) science and practical conference “Moiseev’s Meetings”, dedicated to the memory of the Kamchatka scientist R.S. Moiseev. Petropavlovsk- Kamchatskii: Kamchatpress, 2021: 71–76 https://doi.org/10.53657/9785961004069_71 [In Russian].

4. Brimblecombe P., Tranter M., Abrahams P.W., Blackwood I., Davies T.D., Vincent C.E. Relocation and preferential elution of acidic solute through the snowpack of a small, remote, high-altitude Scottish catchment. Annals of Glaciology. 1985, 7: 141–147. https://doi.org/10.3189/S0260305500006066

5. Chizhova Yu.N., Mikhalenko V.N., Korneva I.A., Murav- yov Ya.D., Hayredinova A.G., Vorobiev M.A. New data on deuterium excess values of glacial ice in Kamchatka Peninsula. Diklady Earth Sciences. 2024, 517 (2): 1387–1392. [preprint]. https://doi.org/10.1134/S1028334X24602190

6. Davies T.D., Vincent C.E., Brimblecombe P. Preferential elution of strong acids from a Norwegian ice cap. Nature. 1982, 300: 161–163. https://doi.org/10.1038/300161a0

7. De Angelis M., Legrand M. Origins and variations of fluoride in Greenland precipitation. Journ. of Geophysical Research. 1994, 99 (D1): 1157–1172. https://doi.org/10.1029/93JD02660

8. Eichler A., Schwikowski M., Gäggeler H.W. Meltwater induced relocation of chemical species in Alpine firn. Tellus B. 2001, 53B: 192–203. https://doi.org/10.3402/tellusb.v53i2.16575

9. Eichler A., Tinner W., Brütsch S., Olivier S., Papina T., Schwikowski M. An ice-core based history of Siberian forest f ires since AD 1250. Quaternary Science Reviews. 2011, 30, 1027–1034. https://doi.org/10.1016/j.quascirev.2011.02.007

10. Fu P., Kawamura K., Seki O., Izawa Yu., Shiraiwa T., Ashworth K. Historical trends of biogenic SOA tracers in an ice core from Kamchatka Peninsula. Environmental Science & Technology Letters. 2016, 3 (10): 351–358. https://doi.org/10.1021/acs.estlett.6b00275

11. Ginot P., Schotterer U., Stichler W., Goboi M.A., Francou B., Schwikowski M. Influence of the Tungurahua eruption on the ice core records of Chimborazo, Ecuador. The Cryosphere. 2010, 4: 561–568. https://doi.org/10.5194/tc-4-561-2010

12. Kawamura K., Izawa Yu., Mochida M., Shiraiwa T. Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia. Geochimica et Cosmochimica Acta. 2012, 99: 317–329. http://dx.doi.org/10.1016/j.gca.2012.08.006

13. Kharuk V.I., Ponomarev E.I., Ivanova G.A., Dvinskaya M.L., Coogan S.C.P., Flannigan M.D. Wildfires in the Siberian taiga. Ambio. 2021, 50: 1953–1974. https://doi.org/10.1007/s13280-020-01490-x

14. Korneva I.A., Toropov P.A., Muraviev A.Ya., Aleshina M.A. Climatic factors affecting Kamchatka glacier recession. International Journ. of Climatology. 2024: 1–25. https://doi.org/10.1002/joc.8328

15. Legrand M., Wolff E.W. The Cryospheric Archive of the Past Atmosphere: Aerosol and Soluble Gases in Ice Cores. Chapter 14 in Chemistry in the Cryosphere Singapore. World Scientific. 2022, 2: 687–754. https://doi.org/10.1142/9789811230134_fmatter

16. Matoba S., Ushakov S.V., Shimbori K., Sasaki H., Yamasaki T., Ovshannikov A.A., Manevich A.G., Zhidele- eva T.M., Kutuzov S., Muravyev Ya.D., Shiraiwa T. The glaciological expedition to Mount Ichinsky, Kamchatka, Russia. Bulletin of Glaciological Research. 2007, 24: 79–85. http://hdl.handle.net/2115/20566

17. Matoba S., Shiraiwa T., Tsushima A., Sasaki H., Muravyev Ya.D. Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka. Annals of Glaciology. 2011, 52 (58): 44–50. http://doi.org/10.3189/172756411797252149

18. Miklalenko V., Sokratov S., Kutuzov S., Ginot P., Leg- rand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. The Cryosphere. 2015, 9: 2253–2270. https://doi.org/10.5194/tc-9-2253-2015

19. Mikhalenko V., Kutuzov S., Toropov P., Legrand M., Sokratov S., Chernyakov G., Lavrentiev I., Prerun- kert S., Kozachek A., Vorobiev M., Khairedinova A., Lipenkov V. Accumulation rates over the past 260 years archived in Elbrus ice core, Caucasus. Climate of the Past. 2024, 20: 237–255. https://doi.org/10.5194/cp-20-237-2024

20. Murav’ev Ya.D., Ovsyannikov A.A., Shiraiwa T. Activity of the Northern Volcano Group According to Drilling Data in the Ushkovsky Crater Glacier, Kamchatka. Journal of Volcanology and Seismology. 2007, 1 (1): 42–52. https://doi.org/10.1134/S0742046307010034

21. Olivier S., Blaser C., Brütsch S., Frolova N., Gäggeler H.W., Henderson K.A., Palmer A.S., Papina T., Schwikow- ski M. Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai. Journ. of Geophysical Research. 2006, 111: D05309. https://doi.org/10.1029/2005JD005830

22. Pratt K.A., Murphy S.M., Subramanian R., DeMott P.J., Kok G.L., Campos T., Rogers D.C., Prenni A.J., Heymsfield A.J., Seinfeld J.H., Prather K.A. Flight- based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmospheric Chemistry and Physics. 2011, 11: 12549–12565. https://doi.org/10.5194/acp-11-12549-2011

23. Pohjola V.A., Moore J.C., Isaksson E., Juahiainen T., van de Wal R.S.W., Martma T., Meijer H.A.J., Vaikmäe R. Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna. Journ. of Geophysical Research. 2002, 107 (D4): 4036–4050. https://doi.org/10.1029/2000JD000149

24. Sato T., Shiraiwa T., Greve R., Seddik H., Edel- mann E., Zwinger T. Accumulation reconstruction and water isotope analysis for 1735–1997 of an ice core from the Ushkovsky volcano, Kamchatka, and their relationships to North Pacific climate records. Climate of the Past. 2013, 9: 2153–2181. https://doi.org/10.5194/cpd-9-2153-2013

25. Schwikowski M., Brütsch S., Gäggeler H.W., Schotterer U. A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. Journ. Of Geophysical Research. 1999, 104 (D11): 13709–13719. https://doi.org/10.1029/1998JD100112

26. Shiraiwa T., Muravyev Ya.D., Yamaguchi S. Stratigraphic Features of Firn as Proxy Climate Signals at the Summit Ice Cap of Usnkovsky Volcano, Kamchatka, Russia. Arctic and Alpine Research. 1997, 29 (4): 414–421. https://doi.org/10.1080/00040851.1997.12003262.

27. Shiraiwa T., Nishio F., Kameda T., Takahashi A., Toyama Y., Muravyev Ya.D., Ovsyannikov A.A. Ice core drilling at Ushkovsky ice cap, Kamchatka, Russia. Seppyo. 1999, 61 (1): 25–40. https://doi.org/10.5331/seppyo.61.25

28. Tsiouris S., Vincent C.E., Davies T.D., Brimblecombe P. The elution of ions through field and laboratory snowpacks. Annals of Glaciology. 1985, 7: 196–201. https://doi.org/10.3189/S0260305500006169

29. Tsushima A., Matoba S., Shiraiwa T., Okamoto S., Sasaki H., Solie D.J., Yoshikawa K. Reconstruction of recent climate change in Alaska from the Aurora Peak ice core, central Alaska. Climate of the Past. 2015, 11: 217–226. https://doi.org/10.5194/cp-11-217-2015

30. Yalcin L., Wake C.P., Kang S., Kreutz K.J., Whitlow S.I. Seasonal and spatial variability in snow chemistry at Eclipse Icefield, Yukon, Canada. Annals of Glaciology. 2006a, 43, 230–238. https://doi.org/10.3189/172756406781811998

31. Yalcin L., Wake C.P., Kreutz K.J., Whitlow S.I. A 1000- yr record of forest fire activity from Eclipse Icefield, Yukon, Canada. The Holocene. 2006b, 16 (2), 200–209. https://doi.org/10.1191/0959683606hl920rp


Supplementary files

For citation: Vorobyev M.A., Kutuzov S.S., Vinogradova M.M., Khairedinova A.G., Chizhova Y.N., Mikhalenko1 V.N. Study of the structure and chemical composition of shallow ice core from the Ushkovsky volcano. Ice and Snow. 2024;64(4):550-566. https://doi.org/10.31857/S2076673424040069

Views: 72

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)