The influence of spatial variability of solar radiation on the mass balance of glaciers in the Grønfjorden Bay area (the Svalbard archipelago)


https://doi.org/10.31857/S2076673424010039

Full Text:




Abstract

In this article, we investigate how the irregular insolation of two low-elevated Svalbard glaciers exerts effect on rates of their surface melting. We compare the spatial distribution of rates of the surface lowering of glaciers Vøringbreen (0.76 km2) and Aldegondabreen (5.5 km2), both are located near Barentsburg settlement in the western part of Nordenskiöld Land (the Spitsbergen Island). As an approximation of the solar radiation flux, we used the potential incoming solar radiation calculated by the ArcticDEM digital elevation model for the period July 15–September 15, which is a typical time of ice ablation in the region under consideration. Motions of both glaciers are extremely slow, which allows assuming that lowering of their surfaces are identical to the rates of surface melting. We have found that both glaciers are distinctly divided into two parts, more and less sunlit. The spatial pattern of insolation of the Vøringbreen glacier is controlled by the shading of the walls surrounding the cirque, while the Aldegondabreen one due to its concave shape has two different areas with a more southern and more northern exposure. The lowering of the surface shows that the more and less illuminated parts differ significantly in ice ablation. The maximum differences in melting caused by the irregular insolation are 2.1 m of ice depth over five years for the Aldegondabreen Glacier (2008–2013 and 2013–2018) and 2.2 m over six years for the Vøringbreen Glacier (2013–2019), that is 40, 30 and 25% of the total values of the surface depression for the corresponding periods. Within every 50-meter altitude interval, correlation coefficients between surface ablation and insolation vary from –0.33 to –0.62 for the Aldegondabreen and from –0.50 to –0.92 for the Vøringbreen glacier. When compared with the vertical gradient of the ice melting, the variability of ablation caused by the irregular insolation correspond to a difference in altitudes of 45–50 m in vertical for the Aldegondabreen and 60 m for Vøringbreen. These values are significant taking into account the small altitudinal range of the glaciers in that part of Spitsbergen.


About the Authors

A. V. Terekhov
Arctic and Antarctic Research Institute
Russian Federation
Saint Petersburg


U. V. Prokhorova
Arctic and Antarctic Research Institute
Russian Federation
Saint Petersburg


V. E. Demidov
Arctic and Antarctic Research Institute
Russian Federation
Saint Petersburg


References

1. Vasilenko E. V., Glazovskiy A. F., Macheret Yu. Ya., Navar­ro F. Kh., Tokarev M. Yu., Kalashnikov A. Yu., Mirosh­nichenko D. E., Reznikov D. S. Radiophysical studies of the Aldegonda glacier on Svalbard in 1999. Materi­aly Glyatsiologicheskikh Issledovaniy. Data of Glacio­logical Studies. 1999, 90: 86–99 [In Russian].

2. Krenke A. N., Khodakov V. G. About the relationship be­tween the glacier surface melt and the air temperature. Materialy glyatsiologitcheskikh issledovaniy. Data of Glaciological Studies. 1966, 12: 153–164 [In Russian].

3. Prokhorova U. V., Terekhov A. V., Demidov V. E., Verku­lich S. R., Ivanov B. V. Intra-annual variability of the surface ablation of the Aldegondabreen glacier (Spitsbergen). Led i Sneg. Ice and Snow. 2023, 2 (63): 62–72. https://doi.org/10.31857/S2076673423020138 [In Russian].

4. Romashova K. V., Chernov R. A., Vasilevich I. I. Study of the glacial flow of rivers in the Grønfjord bay basin (West­ern Svalbard). Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2019, 65 (1): 34–45. https://doi.org/10.30758/0555-2648-2019-65-1-34-45 [In Russian].

5. Sidorova O. R., Tarasov G. V., Verkulich S. R., Cher­nov R. A. Surface ablation variability of mountain gla­ciers of West Spitsbergen. Problemy Arktiki i Antark­tiki. Problems of Arctic and Antarctic. 2019, 65 (4): 438–448. https://doi.org/10.30758/0555-2648-2019-65-4-438-448 [In Russian].

6. Terekhov A. V., Demidov V. E., Kazakov E. E., Anisi­mov M. A., Verkulich S. R. Geodetic mass balance of Voring glacier, Western Spitsbergen, in 2013–2019. Kriosfera Zemli. Earth’s Cryosphere. 2020, XXIV (5): 55–63. https://doi.org/10.21782/KZ1560-7496-2020-5(55-63) [In Russian].

7. Terekhov A. V., Tarasov G. V., Sidorova O. R., Demi­dov V. E., Anisimov M. A., Verkulich S. R. Estimation of mass balance of Aldegondabreen (Spitsbergen) in 2015–2018 based on ArcticDEM, geodetic and glaciological measurements. Led i Sneg. Ice and Snow. 2020, 2 (60): 192–200. https://doi.org/10.31857/S2076673420020033 [In Russian].

8. Chernov R. A., Muraviev A. Y. Contemporary changes in the area of glaciers in the western part of the Nor­denskjold Land (Svalbard). Led i Sneg. Ice and Snow. 2018, 4 (58): 462–472. https://doi.org/10.15356/2076-6734-2018-4-462-472 [In Russian].

9. Chernov R. A. , Kudikov A. V. , Vshivtseva T. V. , Osokin N. I. Estimation of the surface ablation and mass balance of Eustre Grønfjordbreen (Spitsbergen). Led i Sneg. Ice and Snow. 2019, 1 (59): 59–66. https://doi.org/10.15356/2076-6734-2019-1-59-66 [In Russian].

10. Aas K. S., Dunse T., Collier E., Schuler T. V., Berntsen T. K., Kohler J., Luks B. The climatic mass bal­ance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model. The Cryosphere. 2016, 10: 1089–1104. https://doi.org/10.5194/tc-10-1089-2016, 2016

11. Arnold N. S., Rees W. G., Hodson A. J., Kohler J. Topo­graphic controls on the surface energy balance of a high Arctic valley glacier. Journ. of Geophysical Re­search: Earth Surface. 2006, 111: F2.

12. Böhner J., Antonić O. Land-Surface Parameters Specif­ic to Topo-Climatology. Developments in soil sci­ence. 2009, 33: 195–226. https://doi.org/10.1016/S0166-2481(08)00008-1

13. Elagina N., Kutuzov S., Rets E., Smirnov A., Chernov R., Lavrentiev I., Mavlyudov B. Mass balance of Austre Grønfjordbreen, Svalbard, 2006–2020, estimated by glaciological, geodetic and modeling aproaches. Ge­osciences. 2021, 11 (2): 78. https://doi.org/10.3390/geosciences11020078

14. Fountain A. G., Vecchia A. How many Stakes are Re­quired to Measure the Mass Balance of a Gla­cier? Geografiska Annaler, Series A: Physical Geography. 1999, 81 (4): 563–573. https://doi.org/10.1111/j.0435-3676.1999.00084.x

15. Hagen J. O., Liestøl O. Long-Term Glacier Mass-Bal­ance Investigations in Svalbard, 1950–88. Annals of Glaciology. 1990, 14: 102–106. https://doi.org/10.3189/S0260305500008351

16. Hock R. A distributed temperature-index ice- and snow­melt model including potential direct solar radiation. Journ. of Glaciology. 1999, 45 (149): 101–111. https:// doi.org/10.3189/S0022143000003087

17. Mölg T., Cullen N. J., Hardy D. R., Winkler M., Kaser G. Quantifying Climate Change in the Tropical Midtrop­osphere over East Africa from Glacier Shrinkage on Kilimanjaro. Journ. of Climate. 2009, 22: 4162–4181. https://doi.org/10.1175/2009JCLI2954.1

18. Noël B., Jakobs C. L., van Pelt W. J.J., Lhermitte S., Wout­ers B., Kohler J., Hagen J. O., Luks B., Reijmer C. H., van de Berg W. J., van den Broeke M. R. Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications. 2020, 11: 4597. https://doi.org/10.1038/s41467-020-18356-1

19. Oerlemans J., Hoogendoorn N. Mass-Balance Gradi­ents and Climatic Change. Journal of Glaciology. 1989, 35 (121): 399–405. https://doi.org/10.3189/S0022143000009333

20. Ohmura A. Physical Basis for the Temperature-Based Melt-Index Method. Journ. of Applied Meteorology and Climatology. 2001, 40 (4): 753–761. https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2

21. Olson M., Rupper S. Impacts of topographic shading on direct solar radiation for valley glaciers in complex to­pography. The Cryosphere. 2019, 13: 29–40. https:// doi.org/10.5194/tc-13-29-2019

22. Paterson, W.S.B. The Physics of Glaciers. Oxford: Pergam­mon Press, 1994: 480 p.

23. Porter C., Morin P., Howat I., Noh M. J., Bates B., Peter­man K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M., Willamson C., Bauer G., Enos J., Arnold G., Kramer W., Beck­er P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojensen M. 2018, “ArcticDEM”. Harvard Dataverse. V. 1. https://doi.org/10.7910/DVN/OHHUKH

24. Prokhorova U., Terekhov A., Ivanov B., Demidov V. Heat balance of a low-elevated Svalbard glacier during the ablation season: A case study of Aldegondabreen. Arctic, Antarctic, and Alpine Research. 2023, 55 (1): 2190057. https://doi.org/10.1080/15230430.2023.2190057

25. Terekhov A. V., Verkulich S., Borisik A., Demidov V., Prokhorova U., Romashova K., Anisimov M., Sidorova O., Tarasov G. Mass balance, ice volume, and flow velocity of the Vestre Grønfjordbreen (Svalbard) from 2013/14 to 2019/20. Arctic, Antarctic, and Al­pine Research. 2022, 54 (1): 584–602. https://doi.org/10.1080/15230430.2022.2150122

26. Terekhov A., Prokhorova U., Verkulich S., Demidov V., Sidorova O., Anisimov M., Romashova K. Two decades of mass-balance observations on Aldegondabreen, Spitsbergen: Interannual variability and sensitivity to climate change. Annals of Glaciology. 2023: 1–11. https://doi.org/10.1017/aog.2023.40

27. Vincent C., Cusicanqui D., Jourdain B., Laarman O., Six D., Gilbert A., Walpersdorf A., Rabatel A., Piard L., Gim­bert F., Gagliardini O., Peyaud V., Arnaud L., Thib­ert E., Brun F., Nanni U. Geodetic point surface mass balances: A new approach to determine point sur­face mass balances on glaciers from remote sensing measurements. Cryosphere. 2021. 3 (15): 1259–1276. https://doi.org/10.5194/TC-15-1259-2021

28. Vincent C., Six D. Relative contribution of solar radiation and temperature in enhanced temperature-index melt models from a case study at Glacier de Saint-Sorlin, France. Annals of Glaciology. 2013, 54 (63): 11–17. https://doi.org/10.3189/2013AoG63A301

29. Zou X., Ding M., Sun W., Yang D., Liu W., Huai B., Jin S., Xiao C. The surface energy balance of Austre Lovén­breen, Svalbard, during the ablation period in 2014. Polar Research. 2021, 40.


Supplementary files

For citation: Terekhov A.V., Prokhorova U.V., Demidov V.E. The influence of spatial variability of solar radiation on the mass balance of glaciers in the Grønfjorden Bay area (the Svalbard archipelago). Ice and Snow. 2024;64(1):41-53. https://doi.org/10.31857/S2076673424010039

Views: 155

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)