Refined simple model of stable water isotopic content in central Antarctic precipitation including oxygen 17 fractionation


https://doi.org/10.31857/S2076673424010013

Full Text:




Abstract

Modeling the isotopic composition of atmospheric precipitation is an important tool for climatic, paleoclimatic and hydrological studies. This paper presents an improved simple model of the isotopic composition of precipitation in Central Antarctica. It differs from the previous version published by Salamatin et al. (2004) by 1) the included geochemical cycle of oxygen 17 and 2) the possibility of solving the inverse problem (i.e., finding the trajectory parameters that could form the isotopic composition of the precipitation observed at the end of the trajectory). The paper examines in detail the main tuning parameters of the model, among which the most important are the temperature and humidity in the moisture source, the “circulation parameter”, which takes into account the advection of vapor into the moisture source, the condensation temperature and the degree of air supersaturation with moisture in ice clouds. Based on the analysis of data on the isotopic composition (including “excess of oxygen 17”, 17O-xs) of water vapor in the surface layer of the atmosphere over the ocean and surface snow sampled along meridional profiles in East Antarctica, the optimal tuning of the model for calculating the isotopic composition of atmospheric precipitation at the Antarctic Vostok station was performed. In particular, it is shown that the temperature and humidity of the air in the moisture source are +17.4°C and 72%, respectively, and the condensation temperature is –41.3°C. The possibilities of using the model to analyze the isotopic composition of liquid precipitation falling on other continents are discussed. The final part of the paper discusses the limitations of the model. In particular, it is noted that the model does not take into account such processes as the evaporation of precipitation when it falls in arid conditions, mixing of trajectories, the influence of local sources of moisture, as well as the features of isotope fractionation during the evaporation of moisture from the continents.


About the Author

A. A. Ekaykin
Arctic and Antarctic Research Institute
Russian Federation
Saint Petersburg


References

1. Veres A. N., Ekaykin A. A., Vladimirova D. O., Kozachek A. V., Lipenkov V. Ya., Skakun A. A. Climatic variability in the era of MIS‑11 (370–440 ka BP) according to isotope composition (dD, d18O, d17O) of ice from the Vostok station cores. Led i Sneg. Ice and Snow. 2018, 58 (2): 149–158. https://doi.org/10.15356/2076-6734-2018-2-149-158 [In Russian].

2. Ekaykin A. A. Stable water isotopes in Glaciology and Paleogeography. Methodological textbook. Saint Pe­tersburg: AARI. 2016: 68 p. [In Russian].

3. Papina T. S., Malygina N. S., Eirikh A. N., Galanin A. A., Zheleznyak M. N. Isotopic composition and sources of atmospheric precipitation in central Yakutia. Krios­fera Zemli. Earth’s Cryosphere. 2017, XXI (2): 60–69. https://doi.org/10.21782/KZ1560-7496-2017-2(60- 69) [In Russian].

4. Aron P. G., Levin N. E., Beverly E. J., Huth T. E., Pas­sey B. H., Pelletier E. M., Poulsen C. J., Winkel­stern I. Z., Yarian D. A. Triple oxygen isotopes in the water cycle // Chemical Geology. 2021. 565 (120026). P. 1–23. https://doi.org/10.1016/j.chemgeo.2020.120026

5. Barkan E., Luz B. High precision measurements of 17O/16O and 18O/16O ratios in H2O // Rapid Commun. Mass Spectrom. 2005. 19 (24). P. 3737–3742.

6. Barkan E., Luz B. Diffusivity fractionations of H216O/ H217O and H216O/H218O in air and their implications for isotope hydrology // Rapid Commun. Mass Spec­trom. 2007. 21 (18). P. 2999–3005.

7. Cappa C. D., Hendricks M. B., DePaolo D., Cohen R. C. Isotopic fractionation of water during evaporation // Journ. of Geophys. Res. 2003. 108 (D16, ACL 13).

8. Ciais P., Jouzel J. Deuterium and oxygen 18 in precipita­tion: Isotopic model, including mixed cloud process­es // Journ. of Geophys. Research. 1994. 99 (D8). P. 16793–16803.

9. Craig H., Gordon L. I. Deuterium and oxygen‑18 varia­tions in the ocean and the marine atmosphere // Sta­ble isotopes in oceanographic studies and paleotem­peratures, Pisa, Consiglio Nazionale della Ricerche, Laboratorio di Geologia Nucleare, 1965. P. 9–130.

10. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. P. 436–468.

11. Davidge L., Steig E. J., Schauer A. J. Improving contin­uous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements // Atmos. Meas. Tech. 2022. V. 15. P. 7337–7351. https://doi.org/10.5194/amt-15-7337-2022

12. Ekaykin A. A. Meteorological regime of central Antarctica and its role in the formation of isotope composition of snow thickness. Universite Joseph Fourier, Grenoble. 2003. 136 p.

13. Ellehoj M. D., Steen-Larsen H.C., Johnsen S. J., Mad­sen M. B. Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes: Experimental investi­gations and implications for stable water isotope stud­ies // Rapid Commun. Mass Spectrom. 2013. 27 (19). P. 2149–2158. https://doi.org/10.1002/rcm.6668

14. Goursaud S., Masson- Delmotte V., Favier V., Orsi A., Wer­ner M. Water stable isotope spatio-temporal variability in Antarctica in 1960–2013: observations and simu­lations from the ECHAM5-wiso atmospheric general circulation model // Clim. Past. 2018. V. 14. P. 923– 946. https://doi.org/10.5194/cp-14-923-2018

15. Jouzel J., Merlivat L. Deuterium and oxygen 18 in precip­itation: modeling of the isotopic effects during snow formation // Journ. of Geophys. Research. 1984. 89 (D7). P. 11749–11757.

16. Jouzel J., Merlivat L., Lorius C. Deuterium excess in an East Antarctic ice core suggests higher relative humid­ity at the oceanic surface during the last glacial maxi­mum // Nature. 1982. V. 299 (5885). P. 688–591.

17. Jouzel J., Vaikmae R., Petit J. R., Martin M., Duclos Y., Stievenard M., Lorius C., Toots M., Melieres M. A., Burckle L. H., Barkov N. I., Kotlyakov V. M. The two-step shape and timing of the last deglaciation in Ant­arctica // Climate Dynamics. 1995. V. 11. P. 151–161.

18. Landais A., Casado M., Fourré E. Antarctic climate records through water isotopes. Earth Systems and Environ­mental Sciences, Elsevier. 2023.

19. Leroy-Dos Santos C., Fourré E., Agosta C., Casado M., Cau­quoin A., Werner M., Minster B., Prié F., Jossoud O., Petit L., Landais A. From atmospheric water isotopes measurement to firn core interpretation in Adelie Land: A case study for isotope-enabled atmospheric models in Antarctica // EGUsphere. 2023. P. 1–20. https://doi.org/10.5194/egusphere-2023–447, in press.

20. Lorius C., Merlivat L. Distribution of mean surface stable isotope values in East Antarctica: observed changes with depth in the coastal area // IAHS publications. 1977. V. 118. P. 127–137.

21. Markle B. R., Steig E. J. Improving temperature reconstructions from ice-core water-isotope records // Clim. Past. 2022. V. 18. P. 1321–1368. https://doi.org/10.5194/cp-18-1321-2022

22. Masson-Delmotte V., Hou S., Ekaykin A. A., Jouzel J., Aris­tarain A., Bernardo R. T., Bromwich D., Cattani O., Delmotte M., Falourd S., Frezzotti M., Gallee H., Geno­ni L., Isaksson E., Landais A., Helsen M., Hoffmann G., Lopez J., Morgan V., Motoyama H., Noone D., Oert­er H., Petit J. R., Royer A., Uemura R., Schmidt G. A., Schlosser E., Simoes J. C., Steig E., Stenni B., Stieve­nard M., van den Broeke M., van de Wal R., van den Berg W. J., Vimeux F., White J. W.C. A review of Ant­arctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modelling // Journ. Clim. 2008. V. 21 (13). P. 3359–3387.

23. Meijer H. A.J., Li W. J. The use of electrolysis for ac­curate d17O and d18O isotope measurements in water // Isotopes in Environmental and Health Studies. 1998. V. 34. P. 349–369. https://doi.org/10.1080/10256019808234072

24. Merlivat L. Molecular diffusivities of H216O, HD16O and H218O in gases // Jorn. Chem. Phys. 1978. V. 69. P. 2864–2871.

25. Merlivat L., Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipita­tion // Journ. of Geophys. Research. 1979. V. 84 (C8). P. 5029–5033.

26. Merlivat L., Nief G. Fractionnement isotopique lors des changements d’etat solide-vapeur et liquide-vapeur de l’eau a des temperatures inferieures a 0 C // Tellus. 1967. V. 19 (1). P. 122–127.

27. Pang H., Hou S., Landais A., Masson-Delmotte V., Prie F., Steen-Larsen H.C., Risi C., Li Y., Jouzel J., Wang Y., He J., Minster B., Falourd S. Spatial distribution of 17O-excess in surface snow along a traverse from Zhongshan station to Dome A, East Antarctica // Earth and Planetary Science Letters. 2015. V. 414. P. 126–133. https://doi.org/10.1016/j.epsl.2015.01.014

28. Pang H., Zhang P., Wu S., Jouzel J., Steen-Larsen H.C., Liu K., Zhang W., Yu J., An C., Chen D., Hou S. The Dominant Role of Brewer-Dobson Circulation on 17O-Excess Variations in Snow Pits at Dome A, Ant­arctica // Journ. of Geophys. Research. Atmospere. 2022. V. 127 (e2022JD036559). P. 1–10. https://doi.org/10.1029/2022JD036559

29. Reference Sheet for International Measurement Standards (2006) // https://web.archive.org/web/20200729203147/https://nucleus.iaea.org/rpst/documents/VSMOW_SLAP.pdf

30. Risi C., Landais A., Bony S., Jouzel J., Masson-Delmotte V., Vimeux F. Understanding the 17O excess glacial‐inter­glacial variations in Vostok precipitation // Journ. of Geophys. Research. 2010. V. 115 (D10112). P. 1–15. https://doi.org/10.1029/2008JD011535

31. Salamatin A. N., Ekaykin A. A., Lipenkov V. Ya. Modelling isotopic composition in precipitation in Central Ant­arctica // Materialy Glyatsiologicheskih Issledovaniy. 2004. V. 97. P. 24–34.

32. Schoenemann S. W., Steig E. J. Seasonal and spatial vari­ations of 17Oexcess and dexcess in Antarctic precipi­tation: Insights from an intermediate complexity iso­tope model // Journ. of Geophys. Research. Atmos­phere. 2016. V. 121 (19). P. 11215–11247. https://doi.org/10.1002/2016JD025117

33. Sodemann H., Stohl A. Asymmetries in the moisture origin of Antarctic precipitation // Geophys. Research Let­ters. 2009. V. 36 (L22803). P. 1–5.

34. Srivastava R., Ramesh R., Prakash S., Anilkumar N., Sud­hakar M. Oxygen isotope and salinity variations in the Indian sector of the Southern Ocean // Geophys. Re­search Letters. 2007. V. 34 (L24603). P. 1–4.

35. Steig E. J., Jones T. R., Schauer A. J., Kahle E. C., Mor­ris V. A., Vaughn B. H., Davidge L., White J. W.C. Continuous-Flow Analysis of d17O, d18O, and dD of H2O on an Ice Core from the South Pole // Front. Earth Science. 2021. V. 9 (640292). P. 1–14. https://doi.org/10.3389/feart.2021.640292

36. Thurnherr I., Kozachek A. V., Graf P., Weng Y., Bolshi­yanov D. Y., Landwehr S., Pfahl S., Schmale J., Sode­mann H., Steen-Larsen H.C., Toffoli A., Wernli H., Ae­misegger F. Meridional and vertical variations of the wa­ter vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean // At­mosphere Chem. Physics. 2020. V. 20. P. 5811–5835. https://doi.org/10.5194/acp‑20-5811-2020

37. Uemura R., Barkan E., Abe O., Luz B. Triple isotope com­position of oxygen in atmospheric water vapor // Geo­phys. Research Letters. 2010. V. 37 (L04402). P. 1–4. https://doi.org/10.1029/2009GL041960

38. Uemura R., Masson-Delmotte V., Jouzel J., Landais A., Motoyama H., Stenni B. Ranges of moisture-source temperature estimated from Antarctic ice cores sta­ble isotope records over glacial–interglacial cycles // Climate Past. 2012. V. 8. P. 1109–1125. https://doi.org/10.5194/cp-8-1109-2012

39. Werner M., Langebroek P. M., Carlsen T., Herold M., Lohmann G. Stable water isotopes in the ECHAM5 general circulation model: Toward high‐resolution iso­tope modeling on a global scale // Journ. of Geophys. Research. 2011. V. 116 (D15109). P. 1–14. https://doi.org/10.1029/2011JD015681

40. Westbrook C. D., Illingworth A. J. Evidence that ice forms primarily in supercooled liquid clouds at temperatures > –27°C // Geophys. Research Let­ters. 2011. V. 38 (L14808). P. 1–4. https://doi.org/10.1029/2011GL048021

41. Winkler R., Landais A., Risi C., Baroni M., Ekaykin A. A., Jouzel J., Petit J. R., Prie F., Minster B., Falourd S. In­ter-annual variation of water isotopologue at Vostok indicates a contribution from stratospheric wa­ter vapour // PNAS. 2013. https://doi.org/10.1073/pnas.1215209110

42. Xia Z., Surma J., Winnick M. J. The response and sensi­tivity of deuterium and 17O excess parameters in pre­cipitation to hydroclimate processes // Earth-Science Reviews. 2023. V. 242 (104432). P. 1–26. https://doi.org/10.1016/j.earscirev.2023.104432

43.


Supplementary files

For citation: Ekaykin A.A. Refined simple model of stable water isotopic content in central Antarctic precipitation including oxygen 17 fractionation. Ice and Snow. 2024;64(1):5-24. https://doi.org/10.31857/S2076673424010013

Views: 239

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)