Усовершенствованная модель формирования изотопного состава осадков в Центральной Антарктиде, включающая геохимический цикл кислорода 17
https://doi.org/10.31857/S2076673424010013
Аннотация
Представлена усовершенствованная версия простой модели изотопного состава атмосферных осадков в Центральной Антарктиде, включающая геохимический цикл кислорода 17 и возможность решать обратную задачу. Обсуждается влияние основных настроечных параметров (температура и влажность воздуха в источнике влаги, «циркуляционный параметр», температура конденсации, степень перенасыщения воздуха влагой в ледяных облаках и др.) на результаты моделирования. Обсуждается область применения модели и её возможные ограничения при моделировании изотопного состава осадков в иных климатических условиях.
Об авторе
А. А. ЕкайкинРоссия
Санкт-Петербург
Список литературы
1. Верес А. Н., Екайкин А. А., Владимирова Д. О., Козачек А. В., Липенков В. Я., Скакун А. А. Климатическая изменчивость в эпоху МИС‑11 (370–440 тыс. лет назад) по данным изотопного состава (dD, d18O, d17O) ледяного керна станции Восток // Лёд и Снег. 2018. Т. 58. № 2. С. 149–158. https://doi.org/10.15356/2076-6734-2018-2-149-158
2. Екайкин А. А. Стабильные изотопы воды в гляциологии и палеогеографии: методическое пособие. СПб.: ААНИИ, 2016. 68 с.
3. Папина Т. С., Малыгина Н. С., Эйрих А. Н., Галанин А. А., Железняк М. Н. Изотопный состав и источник атмосферных осадков в центральной Якутии // Криосфера Земли. 2017. Т. XXI. № 2. P. 60–69. https://doi.org/10.21782/KZ1560-7496-2017-2(60–69)
4. Aron P. G., Levin N. E., Beverly E. J., Huth T. E., Passey B. H., Pelletier E. M., Poulsen C. J., Winkelstern I. Z., Yarian D. A. Triple oxygen isotopes in the water cycle // Chemical Geology. 2021. 565 (120026). P. 1–23. https://doi.org/10.1016/j.chemgeo.2020.120026
5. Barkan E., Luz B. High precision measurements of 17O/16O and 18O/16O ratios in H2O // Rapid Commun. Mass Spectrom. 2005. 19 (24). P. 3737–3742.
6. Barkan E., Luz B. Diffusivity fractionations of H216O/ H217O and H216O/H218O in air and their implications for isotope hydrology // Rapid Commun. Mass Spectrom. 2007. 21 (18). P. 2999–3005.
7. Cappa C. D., Hendricks M. B., DePaolo D., Cohen R. C. Isotopic fractionation of water during evaporation // Journ. of Geophys. Res. 2003. 108 (D16, ACL 13).
8. Ciais P., Jouzel J. Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes // Journ. of Geophys. Research. 1994. 99 (D8). P. 16793–16803.
9. Craig H., Gordon L. I. Deuterium and oxygen‑18 variations in the ocean and the marine atmosphere // Stable isotopes in oceanographic studies and paleotemperatures, Pisa, Consiglio Nazionale della Ricerche, Laboratorio di Geologia Nucleare, 1965. P. 9–130.
10. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16. P. 436–468.
11. Davidge L., Steig E. J., Schauer A. J. Improving continuous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements // Atmos. Meas. Tech. 2022. V. 15. P. 7337–7351. https://doi.org/10.5194/amt-15-7337-2022
12. Ekaykin A. A. Meteorological regime of central Antarctica and its role in the formation of isotope composition of snow thickness. Universite Joseph Fourier, Grenoble. 2003. 136 p.
13. Ellehoj M. D., Steen-Larsen H.C., Johnsen S. J., Madsen M. B. Ice-vapor equilibrium fractionation factor of hydrogen and oxygen isotopes: Experimental investigations and implications for stable water isotope studies // Rapid Commun. Mass Spectrom. 2013. 27 (19). P. 2149–2158. https://doi.org/10.1002/rcm.6668
14. Goursaud S., Masson- Delmotte V., Favier V., Orsi A., Werner M. Water stable isotope spatio-temporal variability in Antarctica in 1960–2013: observations and simulations from the ECHAM5-wiso atmospheric general circulation model // Clim. Past. 2018. V. 14. P. 923– 946. https://doi.org/10.5194/cp-14-923-2018
15. Jouzel J., Merlivat L. Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation // Journ. of Geophys. Research. 1984. 89 (D7). P. 11749–11757.
16. Jouzel J., Merlivat L., Lorius C. Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum // Nature. 1982. V. 299 (5885). P. 688–591.
17. Jouzel J., Vaikmae R., Petit J. R., Martin M., Duclos Y., Stievenard M., Lorius C., Toots M., Melieres M. A., Burckle L. H., Barkov N. I., Kotlyakov V. M. The two-step shape and timing of the last deglaciation in Antarctica // Climate Dynamics. 1995. V. 11. P. 151–161.
18. Landais A., Casado M., Fourré E. Antarctic climate records through water isotopes. Earth Systems and Environmental Sciences, Elsevier. 2023.
19. Leroy-Dos Santos C., Fourré E., Agosta C., Casado M., Cauquoin A., Werner M., Minster B., Prié F., Jossoud O., Petit L., Landais A. From atmospheric water isotopes measurement to firn core interpretation in Adelie Land: A case study for isotope-enabled atmospheric models in Antarctica // EGUsphere. 2023. P. 1–20. https://doi.org/10.5194/egusphere-2023–447, in press.
20. Lorius C., Merlivat L. Distribution of mean surface stable isotope values in East Antarctica: observed changes with depth in the coastal area // IAHS publications. 1977. V. 118. P. 127–137.
21. Markle B. R., Steig E. J. Improving temperature reconstructions from ice-core water-isotope records // Clim. Past. 2022. V. 18. P. 1321–1368. https://doi.org/10.5194/cp-18-1321-2022
22. Masson-Delmotte V., Hou S., Ekaykin A. A., Jouzel J., Aristarain A., Bernardo R. T., Bromwich D., Cattani O., Delmotte M., Falourd S., Frezzotti M., Gallee H., Genoni L., Isaksson E., Landais A., Helsen M., Hoffmann G., Lopez J., Morgan V., Motoyama H., Noone D., Oerter H., Petit J. R., Royer A., Uemura R., Schmidt G. A., Schlosser E., Simoes J. C., Steig E., Stenni B., Stievenard M., van den Broeke M., van de Wal R., van den Berg W. J., Vimeux F., White J. W.C. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modelling // Journ. Clim. 2008. V. 21 (13). P. 3359–3387.
23. Meijer H. A.J., Li W. J. The use of electrolysis for accurate d17O and d18O isotope measurements in water // Isotopes in Environmental and Health Studies. 1998. V. 34. P. 349–369. https://doi.org/10.1080/10256019808234072
24. Merlivat L. Molecular diffusivities of H216O, HD16O and H218O in gases // Jorn. Chem. Phys. 1978. V. 69. P. 2864–2871.
25. Merlivat L., Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation // Journ. of Geophys. Research. 1979. V. 84 (C8). P. 5029–5033.
26. Merlivat L., Nief G. Fractionnement isotopique lors des changements d’etat solide-vapeur et liquide-vapeur de l’eau a des temperatures inferieures a 0 C // Tellus. 1967. V. 19 (1). P. 122–127.
27. Pang H., Hou S., Landais A., Masson-Delmotte V., Prie F., Steen-Larsen H.C., Risi C., Li Y., Jouzel J., Wang Y., He J., Minster B., Falourd S. Spatial distribution of 17O-excess in surface snow along a traverse from Zhongshan station to Dome A, East Antarctica // Earth and Planetary Science Letters. 2015. V. 414. P. 126–133. https://doi.org/10.1016/j.epsl.2015.01.014
28. Pang H., Zhang P., Wu S., Jouzel J., Steen-Larsen H.C., Liu K., Zhang W., Yu J., An C., Chen D., Hou S. The Dominant Role of Brewer-Dobson Circulation on 17O-Excess Variations in Snow Pits at Dome A, Antarctica // Journ. of Geophys. Research. Atmospere. 2022. V. 127 (e2022JD036559). P. 1–10. https://doi.org/10.1029/2022JD036559
29. Reference Sheet for International Measurement Standards (2006) // https://web.archive.org/web/20200729203147/https://nucleus.iaea.org/rpst/documents/VSMOW_SLAP.pdf
30. Risi C., Landais A., Bony S., Jouzel J., Masson-Delmotte V., Vimeux F. Understanding the 17O excess glacial‐interglacial variations in Vostok precipitation // Journ. of Geophys. Research. 2010. V. 115 (D10112). P. 1–15. https://doi.org/10.1029/2008JD011535
31. Salamatin A. N., Ekaykin A. A., Lipenkov V. Ya. Modelling isotopic composition in precipitation in Central Antarctica // Materialy Glyatsiologicheskih Issledovaniy. 2004. V. 97. P. 24–34.
32. Schoenemann S. W., Steig E. J. Seasonal and spatial variations of 17Oexcess and dexcess in Antarctic precipitation: Insights from an intermediate complexity isotope model // Journ. of Geophys. Research. Atmosphere. 2016. V. 121 (19). P. 11215–11247. https://doi.org/10.1002/2016JD025117
33. Sodemann H., Stohl A. Asymmetries in the moisture origin of Antarctic precipitation // Geophys. Research Letters. 2009. V. 36 (L22803). P. 1–5.
34. Srivastava R., Ramesh R., Prakash S., Anilkumar N., Sudhakar M. Oxygen isotope and salinity variations in the Indian sector of the Southern Ocean // Geophys. Research Letters. 2007. V. 34 (L24603). P. 1–4.
35. Steig E. J., Jones T. R., Schauer A. J., Kahle E. C., Morris V. A., Vaughn B. H., Davidge L., White J. W.C. Continuous-Flow Analysis of d17O, d18O, and dD of H2O on an Ice Core from the South Pole // Front. Earth Science. 2021. V. 9 (640292). P. 1–14. https://doi.org/10.3389/feart.2021.640292
36. Thurnherr I., Kozachek A. V., Graf P., Weng Y., Bolshiyanov D. Y., Landwehr S., Pfahl S., Schmale J., Sodemann H., Steen-Larsen H.C., Toffoli A., Wernli H., Aemisegger F. Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean // Atmosphere Chem. Physics. 2020. V. 20. P. 5811–5835. https://doi.org/10.5194/acp-20-5811-2020
37. Uemura R., Barkan E., Abe O., Luz B. Triple isotope composition of oxygen in atmospheric water vapor // Geophys. Research Letters. 2010. V. 37 (L04402). P. 1–4. https://doi.org/10.1029/2009GL041960
38. Uemura R., Masson-Delmotte V., Jouzel J., Landais A., Motoyama H., Stenni B. Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles // Climate Past. 2012. V. 8. P. 1109–1125. https://doi.org/10.5194/cp-8-1109-2012
39. Werner M., Langebroek P. M., Carlsen T., Herold M., Lohmann G. Stable water isotopes in the ECHAM5 general circulation model: Toward high‐resolution isotope modeling on a global scale // Journ. of Geophys. Research. 2011. V. 116 (D15109). P. 1–14. https://doi.org/10.1029/2011JD015681
40. Westbrook C. D., Illingworth A. J. Evidence that ice forms primarily in supercooled liquid clouds at temperatures > –27°C // Geophys. Research Letters. 2011. V. 38 (L14808). P. 1–4. https://doi.org/10.1029/2011GL048021
41. Winkler R., Landais A., Risi C., Baroni M., Ekaykin A. A., Jouzel J., Petit J. R., Prie F., Minster B., Falourd S. Inter-annual variation of water isotopologue at Vostok indicates a contribution from stratospheric water vapour // PNAS. 2013. https://doi.org/10.1073/pnas.1215209110
42. Xia Z., Surma J., Winnick M. J. The response and sensitivity of deuterium and 17O excess parameters in precipitation to hydroclimate processes // Earth-Science Reviews. 2023. V. 242 (104432). P. 1–26. https://doi.org/10.1016/j.earscirev.2023.104432
Дополнительные файлы
Для цитирования: Екайкин А.А. Усовершенствованная модель формирования изотопного состава осадков в Центральной Антарктиде, включающая геохимический цикл кислорода 17. Лёд и Снег. 2024;64(1):5-24. https://doi.org/10.31857/S2076673424010013
For citation: Ekaykin A.A. Refined simple model of stable water isotopic content in central Antarctic precipitation including oxygen 17 fractionation. Ice and Snow. 2024;64(1):5-24. (In Russ.) https://doi.org/10.31857/S2076673424010013
Обратные ссылки
- Обратные ссылки не определены.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)