Identification and classification of weak layers in the snow


https://doi.org/10.15356/2076-6734-2013-4-74-82


Abstract

The paper considers the role of vertical snowpack structure for snow avalanche formation and describes the idea of «structural instability». It aims at enhancing the knowledge about transition mechanisms between stable and unstable states of snowpack and snow avalanches release. Structural instability implies the presence of weak layer or interface in vertical snowpack profile. Type of snow failure and avalanche characteristics are completely defined by snowpack state and properties. Thus wide variety of genetic types of snow avalanches indicates the existence of structural instability of different types. The detailed analysis of scientific publications and field observations led to the creation of a new classification of weak layers. The layers are classified basing on their cohesiveness, the causes of initial disturbance and internal and external processes which form a weak layer. The classification is a necessary part of global method which allows assessing snowpack stability using modern physical models of snow cover evolution.

About the Author

E. S. Klimenko
Moscow State University
Russian Federation


References

1. Akkuratov V.N. Genetic classification of avalanches. Trudy El’brusskoy vysokogornoy kompleksnoy ekspeditsii. Proc. of the Elbrus high mountain complex expedition. V. 1. Nalchik, 1959: 215–232. [In Russian].

2. Bozhinsky A.N. Instability of natural mass of snow and people on mountain slopes. Itogi nauki i tekhniki. Totals of science and technique. Ser. Glaciology. V. 2. 1980: 122 p. [In Russian].

3. Bozhinsky A.N., Losev K.S. Osnovy lavinovedeniya. Foundations of avalanche studies. Leningrad: Hydrometeoizdat, 1987: 280 p. [In Russian].

4. Bolov R.V. Snow structure and its relationship with avalanche formation. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1982, 43: 49–55. [In Russian].

5. Vodosnezhnye potoki Khibin. Slush avalanche in Khibiny. Eds. A.N. Bozhinsky, S.M. Myagkov. Moscow State University. 2001: 167 p. [In Russian].

6. Dzyuba V.V., Laptev M.N. Genetic classification and diagnostic sings of snow avalanches. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1984, 50: 97–104. [In Russian].

7. Kanaev L.A. Problems of avalanche classification. Trudy SANIGMI. Proc. of the Central Asian Hydrometeorological Institute. 1980, 71 (152): 11–24. [In Russian].

8. Klimenko E.S. Modeling of snow cover on avalanche dangerous slope for estimation of its stability. Georisk. Georisk. 2011, 1: 52–57. [In Russian].

9. Korolev A.I. Some observations of avalanche release. Trudy SANIGMI. Proc. of the Central Asian Hydrometeorological Institute. 1972, 63 (78): 80–88. [In Russian].

10. Losev K.S. Laviny SSSR (rasprostranenie, rayonirovanie, vozmozhnosti prognoza). Avalanches in the USSR (distribution, regionalization, possibilities of prediction). Leningrad: Hydrometeoizdat, 1966: 129 p. [In Russian].

11. Losev K.S. On mechanism of origin the avalanches connected with snowfalls and snowdrifts. Trudy SANIGMI. Proc. of the Central Asian Hydrometeorological Institute. 1972, 63 (78): 3–11. [In Russian].

12. Moskalev Yu.D. Vozniknovenie i dvizhenie lavin. Origin and movement of avalanches. Leningrad: Hydrometeoizdat, 1966: 151 p. [In Russian].

13. Otuoter M. Okhotniki za lavinami. Hunters for avalanches. Moscow: Mir, 1980: 254 p. [Translation from English into Russian].

14. Rzhevsky B.N. Avalanches of strong temperature changes and methods of their prediction. Trudy VGI. Proc. of High Mountain Geophysical Institute. 1967, 12: 253–259. [In Russian].

15. Avalanche atlas. International Commission of Snow and Ice. Paris: UNESCO, 1981: 268 p.

16. Bellaire S., Jamieson J.B., Fierz C. Forcing the snow-cover model SNOWPACK with forecasted weather data. The Cryosphere. 2011, 5: 1115–1125.

17. Bozhinskiy A.N., Nazarov A.N., Chernouss P.A. Avalanches: a probabilistic approach to modeling. Annals of Glaciology. 2001, 32: 255–258.

18. Durand Y., Giraud G., Brun E., Merindol L., Martin E. A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting. Journ. of Glaciology. 1999, 45: 469–484.

19. Fierz C., Armstrong R.L., Durand Y., Etchevers P., Greene E., McClung D.M., Nishimura K., Satyawali P.K., Sokratov S.A. The International Classification for Seasonal Snow on the Ground. IHP-VII Technical Documents in Hydrology №°83. IACS Contribution № 1. Paris: UNESCO, 2009: 80 р.

20. Heierli J. Anticrack model for slab avalanche release. Ph. D. Thesis. University of Karlsruhe–Karlsruhe, Germany. 2008: 102 p.

21. Lehning M., Bartelt P.B., Brown R.L., Fierz C., Satyawali P. A physical SNOWPACK model for the Swiss Avalanche Warning Services. Part III: meteorological boundary conditions, thin layer formulation and evaluation. Cold Region Science and Technology. 2002, 35 (3): 169–184.

22. Reiweger I. Failure of weak snow layers. PhD thesis. ETH Zürich, Switzerland. 2011: 158 p.

23. Schweizer J., Jamieson B. Snowpack properties for snow profile analysis. Cold Regions Science and Technology. 2003, 37: 233–241.

24. Schweizer J., Bellaire S., Fierz C., Lehning M., Pielmeier C. Evaluating and improving the stability predictions of the snow cover model SNOWPACK. Cold Regions Science and Technology. 2006, 46: 52–59.


Supplementary files

For citation: Klimenko E.S. Identification and classification of weak layers in the snow. Ice and Snow. 2013;53(4):74-82. https://doi.org/10.15356/2076-6734-2013-4-74-82

Views: 1365

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)