Геоэлектрические модели гляциально-мерзлотных каменных образований Центрального Алтая


https://doi.org/10.31857/S2076673423040063

Полный текст:




Аннотация

Проведено комплексное изучение гляциально-мерзлотных каменных образований на территории Центрального Алтая в долинах рек Джело, Елангаш, Аккол и Чуя с помощью электрозондирования, геодезической сьёмки и аэрофотосъёмки. Интерпретация данных электротомографии позволила установить глубину залегания и мощность каменно-ледяных ядер. Трёхмерные геоэлектрические модели ГМКО позволили проанализировать распределение льда внутри ГМКО и оценить запасы воды в них.


Об авторах

Г. С. Дьякова
Алтайский государственный университет
Россия
Барнаул


А. А. Гореявчева
Институт геологии и минералогии имени В.С. Соболева СО РАН
Россия
Новосибирск


А. Н. Шеин
Институт нефтегазовой геологии и геофизики им. Трофимука; ГАУ ЯНАО “Научный центр изучения Арктики”
Россия
Новосибирск, Салехард


В. В. Потапов
Институт нефтегазовой геологии и геофизики им. Трофимука
Россия
Новосибирск


Р. Д. Бурым
Алтайский государственный университет
Россия
Барнаул


О. В. Останин
Алтайский государственный университет
Россия
Барнаул


В. В. Оленченко
Институт нефтегазовой геологии и геофизики им. Трофимука
Россия
Новосибирск


Список литературы

1. Балков Е.В., Панин Г.Л., Манштейн Ю.А., Манштейн А.К., Белобородов В.А. Электротомография: аппаратура, методика и опыт применения // Геофизика. 2012. № 6. С. 54–63.

2. Галанин А.А. Каменные глетчеры – особый тип современного горного оледенения северо-востока Азии // Вестник ДВО РАН. 2005. № 5. С. 59–70.

3. Галанин А.А. Каменные глетчеры: история изучения и современные представления // Вестник СВНЦ ДВО РАН. 2008. № 3. С. 15–33.

4. Галанин А.А., Оленченко В.В., Христофоров И.И., Северский Э.В., Галанина А.А. Высокодинамичные каменные глетчеры Тянь-Шаня // Криосфера Земли. 2017. Т. XXI. № 4. С. 58–74. https://doi.org/10.21782/KZ1560-7496-2017-4(58-74)

5. Горбунов А.П. Каменные глетчеры Азиатской России // Криосфера Земли. 2006. № 1. С. 22–28.

6. Дьякова Г.С., Гореявчева А.А., Останин О.В., Оленченко В.В., Бирюков Р.Ю. Геофизические исследования внутреннего строения гляциально-мерзлотных каменных образований Центрального Алтая // Лёд и Снег. 2020. № 60. С. 109–120. https://doi.org/10.31857/S2076673420010027

7. Дьякова Г.С., Оленченко В.В., Останин О.В. Применение метода электротомографии для изучения внутреннего строения каменных глетчеров Алтая // Лёд и Снег. 2017. Т. 57. № 1. С. 69–76. https://doi.org/10.15356/2076-6734-2017-1-69-76

8. Дьякова Г.С., Останин О.В. Гляциально-мерзлотные каменные образования бассейна р. Чуи (Горный Алтай). Барнаул: Изд-во Алтайского гос. ун-та, 2014. 152 с.

9. Дьякова Г.С., Останин О.В. Гляциально-мерзлотные каменные образования Центрального Алтая // Изв. Алтайского гос. ун-та. 2013. № 3. Т. 2. С. 167– 170. https://doi.org/10.14258/izvasu(2013)3.2-35

10. Каталог ледников СССР. Т. 15. Вып. 1. Ч. 6: Бассейн р. Чуи. Л., Гидрометеоиздат, 1978. 52 с.

11. Лапковская А.А., Оленченко В.В., Дьякова Г.С. Геоэлектрическое строение каменного глетчера Сукорского оползне-обвала (Горный Алтай) // Интерэкспо Гео-Сибирь. 2016. С. 53–57.

12. Лапковская А.А., ОленченкоВ.В.,ПотаповВ.В.,Шеин А.Н., Горностаева Е.С., Губин Д.И. Строение каменного глетчера Сукорского обвала (Горный Алтай) по данным электротомографии // Арктика, Субарктика: мозаичность, контрастность, вариативность криосферы: Тр. междун. конф. 2017. С. 195–198.

13. Михайлов Н.Н., Останин О.В., Фукуи К. Гляциальномерзлотные каменные образования Алтая и их изменения // Вестник Санкт-Петербургского ун-та. Сер. 7. 2007. Вып. 3. С. 91–99.

14. Останин О.В., Дьякова Г.С., Алябьев Д.Ю., Ковалев М.В. Опыт использования беспилотных летательных аппаратов для изучения гляциально-мерзлотных каменных образований в долине р. Джело (Центральный Алтай) // География и природопользование Сибири. 2019. Вып. 26. С. 141–148.

15. Останин О.В., Дьякова Г.С. Гляциально-мерзлотные каменные образования Центрального Алтая // Изв. Алтайского гос. ун-та. 2013. № 3. С. 167–170. https://doi.org/10.14258/izvasu(2013)3.2-35

16. Тараканов А.Г. О питании каменных глетчеров ТяньШаня // Материалы гляциологических исследований. Вып. 67. М., 1989. С. 175–183.

17. Bernhard L., Sutter F., Haeberli W., Keller F. Processes of snow/ permafrost-interactions at a high-mountain site, Murtel/Corvatsch, Eastern Swiss Alps. 7th Intern. Conf. on Permafrost (Yellowknife, 23–27 June 1998). Collection Nordicana 57. 1998. P. 35–41.

18. Bodin X. Present status and development of rock glacier complexes in south-faced valleys (45°n, French Alps) // Geogr. Fis. Dinam. Quat. 2013. P. 27–38.

19. Dyakova G.S., Goreyavcheva A.A., Potapov V.V., Shein A.N., Lobachev D.S., Ostanin O.V., Olenchenko V.V., Bobkova D.G. Internal structure of rock glaciers in Altai (The case of talus rock glacier in Dzhelo River Valley) // Ukrainian Journ. of Ecology. 2019. V. 9. № 4. P. 729–731.

20. Dyakova G.S., Goreyavcheva A.A., Ostanin O.V., Olenchenko V.V., Biryukov R.Yu. Geophysical studies of the internal structure of glacial-permafrost stone formations of the Central Altai. Led i Sneg. Ice and Snow. 2020. V. 60. № 1. P. 109–120 [In Russian]. https://doi.org/10.31857/S2076673420010027

21. Haeberli W., Hoelzle M., Kaab A., Keller F., Vonder M.D., Wagner S. Ten years after drilling through the permafrost of the active rock glacier Murtel, Eastern Swiss Alps; answered questions and new perspectives. 7th International Conference on Permafrost (Yellowknife, NORSK GEOGRAFISK TIDSSKRIFT 59 (2005) Composition and internal structures of a rock glacier in Svalbard 147 23–27 June 1998), Collection Nordicana 57. 1998. P. 403–410.

22. Haeberli W., Kaab A., Wagner S., Vonder Muhll D., Geissler P., Haas J.N., Glatzel-Mattheier H., Wagenbach D. Pollen analysis and C14-age of moss remains in a permafrost core recovered from the active rock glacier Murtel/Corvatsch, Swiss Alps: Geomporphological and glaciological implications. Journ. of Glaciology. 1999. V. 45. P. 1–8.

23. Hauck C., Bottcher M., Maurer H. A new model for estimating subsurface ice content based on combined electrical and seismic data sets // The Cryosphere. 2011. № 5. P. 453–468.

24. Hausmann H., Krainer K., Bruckl E., Ullrich C. Internal structure, ice content and dynamics of Olgrube and Kaiserberg rock glaciers (Otztal Alps, Austria) determined from geophysical surveys // Austrian Journ. of Earth Sciences. 2012. V. 105/2. P. 12–31.

25. Jones D.B., Harrison S., Anderson K., Whalley W.B. Rock glaciers and mountain hydrology: A review // EarthScience Reviews. 2019. V. 193. P. 66–90.

26. Kaab A., Gudmundsson G.H., Hoelzle M. Surface deformation of creeping mountain permafrost; photogrammetric investigations on Murtel rock glacier, Swiss Alps. 7th Intern. Conf. on Permafrost (Yellowknife, 23–27 June 1998), Collection Nordicana 57. 1998. P. 531–537.

27. Kneisel C., Bast A., Schwindt D. Quasi-3-D resistivity imaging – mapping of heterogeneous frozen ground conditions using electrical resistivity tomography. The Cryosphere. Discussion. 2009. № 3. P. 895–918. https://doi.org/10.5194/tcd-3-895-2009

28. Krainer K., Ribis M. A Rock Glacier Inventory of the Tyrolean Alps (Austria) // Austrian Journ. of Earth Sciences. 2012. V. 105 (2). P. 32–47.

29. Leopold M., Williams M.W., Caine N., Völkel J., Dethier D. Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA // Permafrost and Periglacial Processes. 2011. V. 22. № 2. P. 107–119.

30. Maurer H., Hauck C. Instruments and Methods Geophysical imaging of alpine rock glaciers // Journ. of Glaciology. 2007. V. 53. № 180. P. 110–120.

31. Noetzli J., Arenson L.U., Bast A., Beutel J., Delaloye R., Farinotti D., Gruber S., Gubler H., Haeberli W., Hasler Andreas., Hauck C., Hiller M., Hoelzle M., Lambiel C., Pellet C., Springman S.M., Muehll D.V., Phillips M. Best Practice for Measuring Permafrost Temperature in Boreholes Based on the Experience in the Swiss Alps. Frontiers in Earth Science. 2021 // Электронный ресурс. https://www.frontiersin.org/articles/10.3389/feart.2021.607875/full (Дата обращения: 07.03.2023).


Дополнительные файлы

Для цитирования: Дьякова Г.С., Гореявчева А.А., Шеин А.Н., Потапов В.В., Бурым Р.Д., Останин О.В., Оленченко В.В. Геоэлектрические модели гляциально-мерзлотных каменных образований Центрального Алтая. Лёд и Снег. 2023;63(4):583-596. https://doi.org/10.31857/S2076673423040063

For citation: Dyakova G.S., Goreyavcheva A.A., Shein A.N., Potapov V.V., Burym R.D., Ostanin O.V., Olenchenko V.V. Geoelectrical Models of Glacial-Permafrost Rock Formations of the Central Altai. Ice and Snow. 2023;63(4):583-596. (In Russ.) https://doi.org/10.31857/S2076673423040063

Просмотров: 156

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)