Изотопный состав атмосферных осадков: моделирование и сравнение результатов с данными наблюдений на плато Юннань (Высокая Азия)


https://doi.org/10.15356/2076-6734-2013-3-78-88

Аннотация

В ледниковых районах изотопный состав жидких и твёрдых атмосферных осадков служит хорошим индикатором гидрологического цикла, так как относительное содержание стабильных изотопов отражает кумулятивную картину фазовых изменений. Наилучшие результаты для оценки изменчивости изотопов в осадках даёт непосредственный анализ проб. Однако интерпретировать изотопные сигналы, полученные таким образом, часто трудно по ряду причин: пропуски в данных; ограниченное число синхронных наблюдений для разных климатических переменных; короткий ряд наблюдений; редкая сеть точек отбора проб. Единственный путь полностью восстановить пространственную и временнýю изменчивость состава стабильных изотопов в осадках – включить цикл изменения изотопного состава в модели общей атмосферной циркуляции (GCM), которые детально моделируют глобальные и региональные особенности динамики и термодинамики атмосферы с полностью восстановленным гидрологическим циклом.

Распределение стабильных изотопов в осадках муссонных районов Высокой Азии, включая плато Юннань, имеет две выраженные особенности: во-первых, содержание стабильных изотопов в осадках заметно снижено, во-вторых, содержание стабильных изотопов в осадках уменьшается в дождливый сезон и повышается в засушливый. Эти особенности хорошо описываются моделью общей циркуляции атмосферы (MUGCM), разработанной в университете г. Мельбурн. Количественный эффект присутствия стабильных изотопов отмечается и в суточном, и в месячном, и в годовом ходе осадков. По сравнению с данными наблюдений результаты моделирования изотопа δ18O показывают бόльшую зависимость от величины осадков. В суточном ходе модельные результаты регрессионной зависимости изотопа δ18О от количества осадков хорошо согласуются с данными наблюдений в районах Тенгчонг и Симао, за исключением угла наклона модельной кривой для соотношения δ18O/P, который немного меньше, чем по данным наблюдений в районе Менгзи. В масштабах месяца и года наклон кривых для соотношения δ18O/P по данным моделирования и материалам наблюдений меньше, чем в случаях суточных данных, а наклон кривой по данным моделирования в два раза меньше, чем показывают результаты наблюдений в районе Кунминга. Для отдельной станции модель хорошо воспроизводит локальную линию метеорных вод (LMWL) в районах Менгзи и Тенгчонг. Однако результаты моделирования не воспроизводят достоверно соотношение между δD и δ18O в осадках, полученное по материалам наблюдений в Симао и Кунминге, где наклон LMWL больше 8, а смещение по оси ординат – выше 10. Кроме того, наклоны модельных кривых LMWL для четырёх станций больше, чем по данным наблюдений. Предположительно это связано с тем, что GCM может переоценивать (завышать) вымывание оксида дейтерия (HDO) и таким образом недооценивать (занижать) значение параметра второго порядка, эксцесса дейтерия, в таком районе, как Юннань.


Об авторах

X. P. Zhang
College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, China;
Китай


H. D. Guan
College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, China; National Centre for Groundwater Research and Training, Flinders University, Adelaide 5001, AU;
Россия


Z. A. Sun
Centre for Australian Weather and Climate Research, Melbourne 3001, Australia
Австралия


Список литературы

1. Vasil’chuk Yu.K., Kotlyakov V.M. Osnoby izotopnoy geokriologii i glyatsiologii. Foundations of geocryology and glaciology. Moscow State University. 2003: 616 p. [In Russian].

2. Mikhalenko V.N. Glubinnor stroenie lednikov tropicheskikh i umerennykh shirot. Deep structure of glaciers in tropical and temperate latitudes. Moscow: 2008: 320 p. [In Russian].

3. Araguás-Araguás L., Froehlich K., Rozanski K.. Stable isotope composition of precipitation over southeast Asia. Journ. of Geophys. Research. 1998, 103 (D22): 28721–28742.

4. Bourke W., McAvaney B., Puri K., Thurling R. Global modeling of atmospheric flow by spectral methods. General circulation models of the atmosphere. Ed. J. Chang. New York, San Francisco: Academic Press, 1977: 267–324.

5. Brown J. The response of stable water isotopes in precipitation and the surface ocean to tropical climate variability. Melbourne: University of Melbourne, 2003: 216 p.

6. Dansgaard W. Stable isotopes in precipitation. Tellus. 1964, 16 (4): 436–468.

7. Duan Xu, Ju Jianhua, Xiao Zinue. The studies on physics process of climate abnormality and forecast signal in Yunnan. Beijing: Meteorological Press, 2000: 206 p. [in Chinese].

8. Hoffmann G., Werner M., Heimann M.. Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years. Journ. of Geophys. Research. 1998, 103 (D14): 16871–16896.

9. Joussaume S., Sadourny R., Jouzel J. A general circulation model of water isotope cycles in the atmosphere. Nature. 1984, 311 (5981): 24–29.

10. Jouzel J., Koster R.D., Suozzo R.J., Russell G.L., White J.W.C., Broecker W.S. Simulations of the HDO and H218O atmospheric cycles using the NASA GISS GCM: Sensitivity experiments for present-day conditions. Journ. of Geophys. Research. 1991, 96 (D4): 7495–7507.

11. Lee J.E., Fung I., DePaolo D.J., Henning. C.C. Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. Journ. of Geophys. Research. 2007, 112 (D16306): 14 p. doi: 10.1029/2006JD007657.

12. McAvaney B.J., Bourke W., Puri K. A global spectral model for simulation of the general circulation. Journ. of Atmospheric Sciences. 1978, 35 (9): 1557–1583.

13. Noone D.C., Simmonds I. Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979–95. Journ. of Climate. 2002, 15 (22): 3150–3169.

14. Rozanski K., Araguás-Araguás L., Gonfiantini R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science. 1992, 258. (5084): 981–985.

15. Schmidt G.A., Ruedy R., Hansen J. E. Present day atmospheric simulations using the GISS Model E: Comparison to in-situ, satellite and reanalysis data. Journ. of Climate. 2006, 19 (2): 153–192.

16. Tindall J.C., Valdes P.J., Sime L. C. Stable water isotopes in HadCM3:Isotopic signature of El Niño–Southern Oscillation and the tropical amount effect. Journ. of Geophys. Research. 2009, 114 (D04111): 12 p. doi: 10.1029/2008JD010825.

17. Vaughan J.I. An evaluation of observed and simulated high-resolution records of stable isotopes in precipitation. Melbourne: University of Melbourne, 2007: 263 p.

18. Zhang Xinping, Yao Tandong, Liu Jingmiao, Tian Lide, Masayoshi Nakawo. Simulations of stable isotopic fractionation in mixed cloud in middle latitudes – taking the precipitation at Urumqi as an example. Advances in Atmospheric Sciences. 2003, 20 (2): 261–268.


Дополнительные файлы

Для цитирования: Zhang X.P., Guan H.D., Sun Z.A. Изотопный состав атмосферных осадков: моделирование и сравнение результатов с данными наблюдений на плато Юннань (Высокая Азия). Лёд и Снег. 2013;53(3):78-88. https://doi.org/10.15356/2076-6734-2013-3-78-88

For citation: Zhang X.P., Guan H.D., Sun Z.A. Stable isotope variations in precipitation: simulations and comparison with observations (Yunnan Plateau, High Asia). Ice and Snow. 2013;53(3):78-88. https://doi.org/10.15356/2076-6734-2013-3-78-88

Просмотров: 397

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)