The description of grounding line migration in a two-dimensional mathematical model of an ice sheet


https://doi.org/10.15356/2076-6734-2013-3-5-11


Abstract

Contemporary thinning of the marine-based areas of ice sheets is believed to be the consequence of the grounding line retreat caused mainly by ocean gradual warming beneath the ice shelves. In order to estimate potential contribution of ice sheets into the future sea-level rise grounding line migration must be accurately described in the mathematical models. We incorporated an algorithm based on application of the boundary condition on the mass flux across the grounding line into a two-dimensional ice flow model. In the numerical experiments, externally forced ice sheet returns to its initial equilibrium state after termination of the external forcing (either accumulation rate or sea-level change anomalies). In future, the model will be modified to incorporate buttressing effect.

About the Authors

O. O. Rybak
Departement Geografie and Earth System Sciences, Vrije Universiteit Brussel; Sochi Scientific Center of the Russian Academy of Sciences;
Russian Federation


E. A. Rybak
Sochi Scientific Center of the Russian Academy of Sciences; Institute of the natural-technical systems, Russian Academy of Sciences, Sochi
Russian Federation


References

1. Grosswald M.G. Pokrovnye ledniki kontinentalnykh shelfov. Ice sheets of continental shelves. Moscow: Nauka, 1983: 216 с. [In Russian].

2. Danilyuk I.I. On the Stephan problem. Uspekhi matematicheskikh nauk. Successes of Mathematical Sciences. 1985, 40, 5 (245):133–185. [In Russian].

3. Rybak O.O. Modeling of migration of marine ice sheet border in the simple numerical model. Izvestiya vyzov. Severo-Kavkazskiy region. Estestvennye nauki. Proc. of vuzov. North-Caucasian region. Natural Sciences. 2010, 4: 126–130. [In Russian].

4. Rybak O.O. Migration of marine ice sheet border in the numerical model. Vestnik Yuzhnogo nauchnogo tsentra RAN. Herald of the South Scientific Center of the Russian Academy of Sciences. 2010, 4: 50–56. [In Russian].

5. Arakawa A., Lamb V. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics. V. 17. Еd. J. Chang. San Francisco: Academic Press, 1977: 174–267.

6. Bueler E. Brown J. Shallow shelf approximation as a «sliding law» in a thermomechanically coupled ice sheet model. Journ. of Geophys. Research. 2009, 114: F03008. doi:10.1029/2008JF001179.

7. Docquier D., Perichon L., Pattyn F. Representing grounding line dynamics in numerical ice sheet models: Recent advances and outlook. Surveys in Geophysics. 2011, 32: 417–435.

8. Fowler A.C. A theoretical treatment of sliding of glaciers in absence of cavitation. Philosophical Transactions of the Royal Society: Series A. 1981, 298: 637–685.

9. Hindmarsh R.C.A. Stability of ice rises and uncoupled marine ice sheets. Annals of Glaciology. 1996, 23: 105–115.

10. Hindmarsh R.C.A. The role of membrane-like stresses in the determining the stability and sensitivity of the Antarctic ice sheets: back pressure and grounding line motion.Philosophical Transactions of the Royal Society: Series A. 2006, 364: 1733–1767. doi:10.1098/rsta.2006.1797.

11. Hutter K. Theoretical Glaciology: material science of ice and the mechanics of glaciers and ice sheets. Dordrecht: D. Reidel, 1983: 510 p.

12. Huybrechts P. The Antarctic ice sheet and environmental change. Berichte zur Polarforschung. 1992, 99: 241 p.

13. MacAyeal D.R., Rommelaere V., Huybrechts P. Hulbe C.L., Determann J., Ritz C. An ice-shelf model test based on the Ross ice shelf. Annals of Glaciology. 1996, 23: 46–51.

14. Oppenheimer M. Global warming and the stability of the West Antarctic Ice Sheet. Nature. 1998, 393: 325–332.

15. Paterson W.S.B. The physics of glaciers. Oxford: Elsevier, 1994. 480 p.

16. Pattyn F., Huyghe A., De Brabander S., De Smedt B. Role of transition zones in marine ice sheet dynamics. Journ. of Geophys. Research. 2006, 111: F02004. doi:10.1029/2005JF000.

17. Pattyn F., Schoof C., Perichon L., Hindmarsh R.C.A., Bueler E., de Fleurian B., Durand G., Gagliardini O., Gladstone R., Goldberg D., Gudmundsson G.H., Huybrechts P., Lee V., Nick F. M., Payne A. J., Pollard D., Rybak O., Saito F., Vieli A. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. The Cryosphere. 2012, 6: 573–588.

18. Pattyn F., Perichon L., Durand G., Favier L., Gagliardini O., Hindmarsh R.C.A., Zwinger T., Abrecht T., Cornford S., Docquier D., Fürst J.J., Goldberg D., Gudmundsson G.H., Humbert A., Hütten M., Huybrechts P., Jouvet G., Kleiner T., Larour E., Martin D., Morlighem M., Payne A.J., Pollard D., Rückamp M., Rybak O., Seroussi H., Thoma M., Wilkens N. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. Journ. of Glaciology. 2013, 59: 410–422.

19. Pollard D., DeConto R. Modeling West Antarctic Ice Sheet growth and collapse through the last 5 million years. Nature. 2009, 458: 329–332. doi:10.1038/nature07809.

20. Schoof C. Ice sheet grounding line dynamics: steady states, stability and hysteresis. Journ. of Geophys. Research. 2007, 112: F03S28. doi: 10.1029/2006JF000664.

21. Shepherd A., Wingham D., Rignot E. Warm ocean is eroding West Antarctic Ice. Geophys. Research Letters. 2004, 31: L23402. doi:10.1029/2004GL021106.

22. Shumskiy P.A., Krass M.S. Mathematical models of ice shelves. Journ. of Glaciology. 1976, 17: 419–432.

23. Thomas R.H., Bentley C.R. A model for Holocene retreat of the West Antarctic ice sheet. Quaternary Research. 1978, 10: 150–170.

24. Weertman J. Stability of the junction of an ice sheet and an ice shelf. Journ. of Glaciology. 1974, 13: 3–11.

25. Wilchinsky A.V., Chugunov V.A. Ice-stream-ice-shelf transition: theoretical analysis of two-dimensional flow. Annals of Glaciology. 2000, 30: 153–162.


Supplementary files

For citation: Rybak O.O., Rybak E.A. The description of grounding line migration in a two-dimensional mathematical model of an ice sheet. Ice and Snow. 2013;53(3):5-11. https://doi.org/10.15356/2076-6734-2013-3-5-11

Views: 1028

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)