Chemical composition of the atmospheric aerosols in arctic regions in the summer of 2021
https://doi.org/10.31857/S2076673422040155
Abstract
Atmospheric aerosol is an important characteristic of the state of the atmospheric air, therefore, in the summer of 2021, atmospheric aerosol samples were collected in the expeditions of the Shirshov Institute of Oceanology of the Russian Academy of Sciences to study the chemical composition (ions, trace elements, polyaromatic hydrocarbons) of aerosols in the Arctic atmosphere. The expeditions were carried out on the research ship (RS) Akademik Mstislav Keldysh in the Kara Sea (83rd cruise, June 18 - July 8, 2021), in the Barents Sea and the Norwegian-Greenland Basin (84th cruise, July 24 - August 26, 2021). It is established that the average total concentration of ions in the aerosol of the Kara Sea is 5.4±1.9 µg/m3, which corresponds to the average data obtained in previous years. In the aerosol of the Barents Sea and the Norwegian-Greenland basin, the average value of 5.0±2.1 μg/m3 was considered as potentially possible for the studied region. Concentrations of such ions as Na+, NH4 + and Cl-dominated in the aerosol composition of all regions. The average total concentration of trace elements in the composition of the aerosol of the Barents Sea and the Norwegian-Greenland basin is 1,5 times higher than in the aerosol of the Kara Sea. The predominant concentrations of trace elements in the aerosol of both study areas were Cr, Zn, Al, Fe. Mo, Sr, Ba, Mn, Sn, Ti, Pb, Cu, Ni. As a result of the calculation of the ranking of trace elements by atmospheric pollution in the aerosol of the Kara Sea, Fe, Cu, Ni, Pb are prioritized, and in the aerosol of the Barents Sea and the Norwegian-Greenland basin - Fe, Cu, Sn, Pb. The level of air pollution with trace elements in both areas is low. 13 compounds of polyaromatic hydrocarbons with an average total concentration of 0.65 ng/m3 in aerosol collected in 83 cruise, and 0.75 ng/m3 in 84 one were identified. Compounds of polyaromatic hydrocarbons with two and three benzene rings (naphthalene, phenanthrene and their homologues) coming from petrogenic sources accounted for 92 and 80% of the total amount of polyaromatic hydrocarbons, respectively. Atmospheric aerosol sampling for the study of chemical composition was carried out under conditions of fog of various densities, with precipitation and destruction of seasonal ice.
About the Authors
L. P. GolobokovaRussian Federation
Irkutsk
I. A. Kruglinsky
Russian Federation
Tomsk
A. O. Pochufarov
Russian Federation
Tomsk
I. I. Marinaite
Russian Federation
Irkutsk
N. A. Onishchuk
Russian Federation
Irkutsk
M. D. Kravchishina
Russian Federation
Moscow
M. V. Flint
Russian Federation
Moscow
M. Yu. Shikhovtsev
Russian Federation
Irkutsk
O. I. Khuriganova
Russian Federation
Irkutsk
Tomsk
References
1. Ginzburg A.S, Gubanova D.P, Minashkin V.M. Influence of natural and anthropogenic aerosols on the global and regional climate Rossiyskiy khimicheskiy zhurnal Russian Chemical Journ 2008, 52 (5): 112–119 [In Russian]
2. Golobokova L.P., Khodzher T.V., Izosimova O.N., Zenkova P.N., Pochyufarov A.O., Khuriganova O.I., Onischuk N.A., Marinaite I.I., Pol'kin V.V., Radionov V.F., Sakerin S.M., Lisitsin A.P., Shevchenko V.P. Chemical composition of atmospheric aerosol in the Arctic region along the routes of the research cruises in 2018-2019 Optika Atmosfery i Okeana. Atmospheric and Oceanic Optics 2020, 33 (06): 421–429 doi: 10.15372/AOO20200601 [In Russian]
3. Golobokova L.P., Khodzher T.V., Chernov D.G., Sidorova O.R., Khuriganova O.I., Onischuk N.A., Zhuchenko N.A., Marinaite I.I. Chemical composition of the near–surface atmospheric aerosol in Barentsburg (Svalbard) based on the long-term observations Led i Sneg Ice and Snow 2020, 60 (1): 85–97 doi: 10.31857/S2076673420010025 [In Russian]
4. Ivlev L.S. Khimicheskiy sostav i struktura atmosfernykh aerozoley Chemical composition and structure of atmospheric aerosols Leningrad: Leningrad University Press 1982: 368 p
5. Kravchishina M. D., Klyuvitkin A.A., Volodin V.D., Glukhovets D.I., Dubinina E.O., Kruglinskii I.A., Kudryavtseva E.A., Matul A.G., Novichkova E.A., Politova N.V., Savvichev A.S., Silkin V.A., Starodymova D.P. Systems Research of Sedimentation in the European Arctic in the 84th Cruise of the Research Vessel Akademik Mstislav Keldysh . Okeanologiya. Oceanology 2022, 62 (4): 660–663 doi: 10.31857/S0030157422040062 [In Russian]
6. Meleshko V.P., Kattsov V.M., Mirvis V.M., Baidin A.V., Pavlova T.V., Govorkova V.A. Is there a link between Arctic Sea ice loss and increasing frequency of extremely cold winters in Eurasia and North America? Synthesis of current research Meteorologiya i gidrologiya. Meteorology and Hydrology 2018, 43: 743–755 doi: 10.3103/S1068373918110055 [In Russian]
7. Nadubovich Yu.A. Polarization effects during flashes of optical radiation, radiant aurora forms and twilight Phizicheskie yavleniya v atmosphere bysokih shirot. Physical phenomena in the atmosphere of high latitudes Yakutsk: USSR Academy of Sciences, 1977: 40–49 [In Russian]
8. Predel'no dopustimyye kontsentratsii (PDK) zagryaznyayushchikh veshchestv v atmosfernom vozdukhe gorodskikh i sel'skikh poseleniy: Gigiyenicheskiye normativy, s izmeneniyami, utverzhdennyye postanovleniyem glavnogo gosudarstvennogo sanitarnogo vracha Rossiyskoy Federatsii 31.05.2018. Maximum permissible concentrations (MPC) of pollutants in the atmospheric air of urban and rural settlements: Hygienic standards, as amended, approved by Decree of the Chief State Sanitary Doctor of the Russian Federation 31 05 2018 № 37 Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor 2019: 55 p
9. Rusina E.N., Radionov V.F. Estimation of "preindustrial" optical depth of the atmosphere in a polar haze in the Аrctic and recent contribution of anthropogenic emissions Meteorologiya i gidrologiya. Meteorology and Hydrology 2002, 5: 35–39 [In Russian]
10. Sakerin S.M., Golobokova L.P., Kabanov D.M., Kozlov V.S., Pol’kin V.V., Radionov V.F., Chernov D.G. Comparison of Average Aerosol Characteristics in Neighboring Arctic Regions Optika Atmosfery i Okeana. Atmospheric and Oceanic Optics 2018, 31 (8): 640–646 doi: 10.1134/S1024856019010147 [In Russian]
11. Semenov V.A., Martin T., Behrens L.K., Latif M., Astafieva E.S. Arctic sea ice area changes in CMIP3 and CMIP5 climate models’ ensembles Led i Sneg. Ice and Snow 2017, 57 (1): 77–107 doi: 10.15356/2076-67342017-1-77-107 [In Russian]
12. Flint M.V., Poyarkov S.G., Rimsky-Korsakov N.A., Miroshnikov A.Yu Ecosystems of Siberian Arctic Seas – 2021: Ecosystem of the Kara Sea in a Period of Seasonal Ice Melting (83 Cruise of Research Vessel «Akademik Mstislav Keldysh» Okeanologiya. Oceanology 2022, 62 (1): 158–161 doi: 10.31857/S0030157422010051 [In Russian]
13. Shevchenko V.P. Vliyaniye aerozoley na okruzhayushchuyu sredu i morskoye osadkonakopleniye v Arktike The influence of aerosols on the oceanic sedimentation and environmental conditions in the Arctic Moscow: Nauka, 2006: 226 p [In Russian]
14. Shevchenko V.P., Golobokova L.P., Sakerin S.M., Lisitsyn A.P., Kabanov D.M., Novigatsky A.N., Panchenko M.V., Politova N.V., Polkin V.V., Popovicheva O.B., Khodzher T.V. Scattered sedimentation over the Barents Sea Sistema Barentseva moray Barents Sea System Edited by A P Lisitsyn Moscow: GEOS, 2021: 127–142 [In Russian]
15. Shevchenko V.P., Lisitsyn A.P., Vinogradova A.A., Serova V.V., Stein R. Aerosol fluxes on the surface of the Arctic Ocean and their role in sedimentation and in the formation of the natural environment of the Arctic Opyt sistemnykh okeanologicheskikh issledovaniy v Arktike. Experience of systematic oceanological research in the Arctic Moscow: Scientific world, 2001: 385–393 [In Russian]
16. Ekologicheskiy monitoring: Metodicheskiye ukazaniya k samostoyatel'noy rabote studentov po napravleniyu «Tekhnosfernaya bezopasnost'» (20.03.01). Environmental monitoring: Methodological instructions for students' independent work in the field of «Technosphere safety» Compiled by: G V Mavrin, R M Pademirova, D A Kharlyamov Naberezhnye Chelny: INEKA, 2015: 61 р [In Russian]
17. Barrie L.A., Fisher D., Koerner R.M. Twentieth century trends in Arctic air pollution revealed by conductivity and acidity observations in show and ice in the Canadian high Arctic Atmospheric Environment 1985, 19: 2055–2063
18. Bond T. C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M. G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K., Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. Bounding the role of black carbon in the climate system: A scientific assessment Journ of Geophys Research: Atmosphere 2013, 118: 5380–5552 doi: 10.1002/jgrd.5017
19. Davidson C.I., Harrington J. R., Stephenson M.J., Monaghan M.C., Pudykiewicz J., Schell W.R. Radioactive Cesium from the Chernobyl Accident in the Greenland Ice Sheet Science 1987, 237 (4815): 633– 634 doi: 10.1126/science.3603043
20. Gorshkov A.G., Izosimova O.N., Kustova O.V., Marinaite I.I., Galachyants Y.P., Sinyukovich V.N., Khodzher T.V. Wildfires as a source of PAHs in surface waters of background areas (Lake Baikal, Russia) Water 2021, 13 (2636): 1–16 doi: 10.3390/w13192636
21. Group of Experts on Climate Change Impacts and Adaptation for Transport Networks and Nodes Seventeenth session (Geneva) 2015 https://unece.org/7thsession-22 (Last access: 20 May 2022)
22. Heintzenberg J., Hansson H.C., Lannefors H. The chemical composition of arctic haze at Ny-Alesund, Spitsbergen Tellus 1981, 33 (2): 162–171 doi: 10.3402/tellusa.v33i2.10705
23. Humpert M. The IMO agreed on a draft regulation which would phase out the use and carriage of HFO in the Arctic starting in 2024 Environmental groups criticize loopholes which delay the ban until 2029 for Arctic-flagged vessels 2020 https://www.highnorthnews.com/en/imo-moves-forward-ban-arctic-hfo-exemptssome-vessels-until-2029 (last access: 20 May 2022)
24. Keene W.C., Pszenny A.A.P., Gallowa, J.N., Hawley M.E. Sea-salt corrections and interpretation of constitutent ratios in marine precipitation Journ of Geophys Research 1986, 91 (D6): 6647–6658
25. Millero F.J., Chemical Oceanography 4th ed Boca Raton: CRC Press Florida 2016: 591 p
26. Morillo E., Romero A.S, Maqueda C., Madrid L., Ajmone– Marsan F., Grcman H., Davidson C.M., Hursthouse A.S., Villaverde J. Soil pollution by PAHs in urban soils: a comparison of three European cities Journ of Environ Monit Assess 2007, 9: 1001–1008 doi: 10.1039/b705955h
27. Shaw G.E. The Arctic haze phenomenon. Bull Amer Meteorol Soc 1995, 76 (12): 2403–2414
28. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system Bull Amer Meteorol Society 2015, 96: 2059–2077 doi: 10.1175/BAMS-D-14-00110.1
29. Wei L., Mosley–Thompson E., Gabrielli P., Thompson L.G., Barbante C. Synchronous deposition of volcanic ash and sulfate aerosols over Greenland in 1783 from the Laki eruption (Iceland) Geophys Research Letters 2008, 35: L16501 doi: 10.1029/2008GL035117
30. Xu G., Gao Y. Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica Polar Res 2014, 33: 23973 doi: 10 3402/polarv 33 23973
Supplementary files
For citation: Golobokova L.P., Kruglinsky I.A., Pochufarov A.O., Marinaite I.I., Onishchuk N.A., Kravchishina M.D., Flint M.V., Shikhovtsev M.Y., Khuriganova O.I. Chemical composition of the atmospheric aerosols in arctic regions in the summer of 2021. Ice and Snow. 2022;62(4):607-620. https://doi.org/10.31857/S2076673422040155
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)