Multiyear variability of ice concentration in the White Sea according to satellite data


https://doi.org/10.31857/S2076673422040153

Full Text:




Abstract

The objectives of this study were to analyze satellite data on the ice conditions in the White Sea available for the period 1979-2021 so that to identify statistically significant trends in closeness of ice during that period, and to establish spatial and temporal characteristics of the sea ice regime in this area. It was found that according to the satellite data a statistically significant negative trend (-0.34±0.11% year-1 at a significance level of 0.05) of the ice closeness changes was observed over the above period for all areas of the sea, which corresponds to the general tendency of reducing the area of the Arctic ice cover due to the global warming. However, contrary to the statements of J.C. Comiso, D.K. Perovich, M.C. Serreze, J. Streve, D. Notz that since the beginning of the XX century the reduction of the ice area in the Arctic Ocean accelerates, no tendency in decrease of mean annual values of the ice closeness for the White Sea was revealed. In addition, the results of the regression analysis showed a slight decrease in the absolute value of the trend from - 0.74±0.38% year-1 in 1979-1996 to -0.47±0.25% year-1 in 1997-2020. It is also shown that the results of a comparative analysis of two trends in the year-to-year variability of ice closeness in the White Sea: the first one obtained from the microwave radiometer data provided by the National Snow and Ice Data Center, and the second one revealed from data of advanced microwave scanning radiometers (the University of Bremen), are in good agreement with each other. The difference in the slope coefficients of the linear approximation is only 0.038% year-1 for the period 2002-2020. This is the important argument in support of using microwave radiometer data to determine trends in variability of ice closeness in the White Sea.


Keywords



About the Author

V. N. Baklagin
Northern Water Problems Institute of the Karelian Research Centre, Russian Academy of Sciences
Russian Federation
Petrozavodsk


References

1. Bobylev L.P., Shalina E.V., Johannessen O.M., Zabolotskih E.V., Sandven S., Babina O.I. Changes in the arctic ice cover from satellite passive microwave data Problemy Arktiki i Antarktiki. Arctic and Antarctic Research 2008, 1 (78): 38–47 [In Russian]

2. Gidrometeorologiya i gidrohimiya morej SSSR. Hydrometeorology and hydrochemistry of the seas of the USSR V 2 Is 1 Leningrad: Hydrometeoizdat, 1991: 241 p [In Russian]

3. Dobrovol'skij A.D., Zalogin B.S. Morya SSSR Seas of the USSR Moscow: Moscow University Press, 1982: 192 p [In Russian]

4. Dumanskaya I.O. Analysis of the variability of the position of drifting ice edges and the maximum ice coverage of the White Sea Trudy Gidrometcentra Rossii Proc of the Hydrometeorological Center of Russia 2004, 339: 45–54 [In Russian]

5. Dumanskaya I.O. Study of variability and forecast of characteristics of drifting ice in the White Sea PhD Moscow: Gidrometeorol nauch .-issled centr RF, 2007: 208 p [In Russian]

6. Dumanskaya I.O. Ledovye usloviya morej evropejskoj chasti Rossii Ice conditions of the seas of the European part of Russia Obninsk: IG–SOCIN, 2014: 608 p

7. Zabolotskih E.V. Review of methods to retrieve sea ice parameters from satellite microwave radiometer data Izvestiya RAN. Fizika atmosfery i okeana. Proc of the RAS Physics of the atmosphere and ocean 2019, 55 (1): 128–151 doi: 10.31857/S0002-3515551128-151 [In Russian]

8. Johannessen O.M., Bobylev L.P., Kuz'mina S.I., Shalina E.V., Hvorostovskij K.S. Arctic climate variability in the context of global changes Vychislitel'nye tekhnologii. Computational Technologies 2005, 10 (1): 56–62 [In Russian]

9. Johannessen O.M., Aleksandrov V.YU., Frolov I.E., Sandven S., Pettersson L.H., Bobylev L.P., Kloster K., Smirnov V.G., Mironov E.U., Babich N.G. Nauchnye issledovaniya v Arktike T 3 Distancionnoe zondirovanie morskih l'dov na severnom morskom puti: izuchenie i primenenie Scientific research in the Arctic V 3 Remote sensing of sea ice on the Northern Sea route: study and application Saint Petersburg: Nauka, 2007: 512 p [In Russian]

10. Kuznecov A.D., Saenko A.G., Serouhova O.S., Simakina T.E. Algorithm for finding moments of trend change in time series of meteorological quantities Vestnik TvGU. Seriya: Prikladnaya matematika Herald of Tver State University Series: Applied mathematics 2019, 3: 74– 89 doi: 10.26456/vtpmk541 [In Russian]

11. Lociya Belogo moray. The lot of the White Sea Saint Petersburg: The Main Directorate of Navigation and Oceanography of the Ministry of Defense of the Russian Federation, 1995: 335 p [In Russian]

12. Sputnikovye metody opredeleniya harakteristik ledyanogo pokrova morej. Satellite methods for determining the characteristics of the sea ice cover Saint Petersburg: AARI, 2011: 240 p [In Russian]

13. Shalina E.V. Johannessen O.M., Bobylev L.P. Changes in the Arctic ice cover according to satellite passive microwave sensing data from 1978 to 2007 Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. Current problems in remote sensing of the Earth from space 2008, 2 (5): 228–223 [In Russian]

14. Shalina E.V. Reduction of the Arctic ice cover according to satellite passive microwave sensing Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. Current problems in remote sensing of the Earth from space 2013, 10 (1): 328–336 [In Russian]

15. Shalina E.V. Regional peculiarities of changes in the ice situation in the seas of the Russian Arctic and on the route of the Northern Sea Route according to satellite observations Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa. Current problems in remote sensing of the Earth from space 2021, 18 (5): 201–213 [In Russian]

16. Cavalieri D.J., Parkinson, C.L. Arctic sea ice variability and trends, 1979–2010 The Cryosphere 2012, 6: 881– 889 doi: 10.5194/tc-6-881-2012

17. Comiso J.C., Parkinson C.L., Gersten R., Stock L. Accelerated decline in the Arctic sea ice cover Geophys Research Letters 2007, 34: L01703 doi: 10.1029/2007/GL031972

18. Filatov N.N., Pozdnyakov D.V., Johannessen O.M., Pettersson L.H. White Sea: Its Marine Environment and Ecosystem Dynamics Influenced by Global Change Chichester, UK: Springer-Praxis, 2005: 463 p doi: 10.1007/3-540-27695-5

19. Granskog M., Kaartokallio H., Kuosa H., Thomas D.N., Vainiob J. Sea ice in the Baltic Sea – A review Estuarine, Coastal and Shelf Science 2006, 70 (1–2): 145– 160 doi: 10.1016/j.ecss.2006.06.001

20. Heygster G., Wiebe H., Spreen G., Kaleschke L. AMSR-E geolocation and validation of sea ice concentrations based on 89 GHz data Journ Remote Sensing Soc Japan 2009, 29 (1): 226–235

21. Jouhannssen O.M., Miles M., Bjorgo E. The Arctic’s shrinking ice Nature 1995, 376: 126–127

22. Kern S., Lavergne T., Notz D., Pedersen L.T., Tonboe R.T., Saldo R., Sørensen A.M. Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations // The Cryosphere 2019, 13: 3261–3307 doi: 10.5194/tc-13-3261-2019

23. Kern S., Lavergne T., Notz D., Pedersen L.T., Tonboe R. Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions The Cryosphere 2020, 14: 2469–2493 doi: 10.5194/tc-14-2469-2020

24. Maslanik J., Stroeve J., Fowler C., Emery W. Distribution and trends in Arctic sea ice age through spring 2011 Geophys Research Letters 2011, 38 (13): L13502 doi: 10.1029/2011GL047735

25. Parkinson C.L., Cavalieri D.J., Gloersen P., Zwally H.J., Comiso J.C. Arctic sea ice extents, areas, and trends, 1978–1996 Journ of Geophys Research 1999, 104 (C9): 20837–20856

26. Parkinson C.L., Cavalieri D.J. Arctic sea ice variability and trends, 1979–2006 Journ of Geophys Research 2008, 113 (C7): C07003 doi: 10.1029/2007JC004558

27. Perovich D.K., Richter-Menge J.A. Loss of Sea Ice in the Arctic Ann Rev of Marine Science 2009, 1: 417–441 doi: 10.1146/annurev marine.010908.163805

28. Rodrigues J. The rapid decline of the sea ice in the Russian Arctic Cold Reg Science and Technol 2008, 54: 124– 142 doi: 10.1016/j.coldregions.2008.03.008

29. Serreze M.C., Stroeve J. Arctic sea ice trends, variability and implications for seasonal ice forecasting Philos Trans Royal Society 2015, A373: 20140159 doi: 10.1098/rsta.2014.0159

30. Spreen G., Kaleschke L., Heygster G. Sea ice remote sensing using AMSR-E 89 GHz channels Journ of Geophys Research 2008, 113: C02S03 doi: 10.1029/2005JC003384

31. Stroeve J., Notz D. Changing state of Arctic sea ice across all seasons Environ Research Letters 2018, 13 (10): 103001 doi: 10.1088/1748-9326/aade56

32. Tschudi, M.A., Meier W.N., Stewart J.S. An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC) The Cryosphere 2020: 1519–1536 doi: 10.5194/tc-14-1519-2020

33. Wiebe H., Heygster G., Markus T. Comparison of the ASI ice concentration algorithm with Landsat-7 ETM+ and SAR imagery IEEE Transactions on Geoscience Remote Sensing 2009, 47 (9): 3008–3015 doi: 10.1109/TGRS.2008.919272


Supplementary files

For citation: Baklagin V.N. Multiyear variability of ice concentration in the White Sea according to satellite data. Ice and Snow. 2022;62(4):579-590. https://doi.org/10.31857/S2076673422040153

Views: 305

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)