Effect of ice formation in crevasses to the temperature field in the cold layer of glacier


https://doi.org/10.31857/S2076673422040148

Full Text:




Abstract

The work focuses on modeling the warming of a glacier due to heat release during the refreezing of meltwater in glacier crevasses (cryo-hydrologic warming). The simulation is performed for a polythermal Arctic glacier with a regular network of crevasses filled with water at 0 °C, for the1-year period of freezing of water in crevasses in the cold layer of a glacier, below the active layer. The upper (active layer base) and lower (initial cold-temperate transition surface) boundaries of the cold layer are considered horizontal planes; the crevasses are assumed to be identical narrow straight parallel water-filled channels. These assumptions allow considering the corresponding mathematical problem in a 2D setting. The time-dependent temperature distribution in the modeled domain is calculated explicitly as the solution to a 2D initial boundary value problem for the heat equation with spatially distributed heat sources that model the network of crevasses. The initial temperature distribution and the spatial parameters of the model are set based on the field data from the polythermal glacier Austre Grønfjordbreen (Svalbard). For a fixed geometry of the crevasses (the distance between neighboring crevasses is 10 m, the depth is 10 m, the width is of order 0.1 m) we performed an analytical-solution-based simulation of the temperature field at the end of a year-long period of heating varying the active layer base temperature (-3, -2 °C) and the initial thickness of the cold layer (20, 40, 60 m). The results suggest that the temperature field is more influenced by the cold layer thickness than the upper boundary temperature. The maximum temperature increment is 1–2 °C depending on the simulated case. The cold-temperate transition surface shifts up under the crevasse area by a maximum of 3.4 m (only in the case of 20-m cold layer). The temperature field remains unperturbed at a distance of 20 m or more in any direction from the crevasse zone. Our results may be useful for quantitative comparison of cryo-hydrologic warming with other factors of the temperature state of glaciers.


About the Authors

G. A. Chernyakov
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


R. A. Chernov
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Vasilenko E.V., Glazovsky A.F., Lavrentiev I.I., Macheret Y.Y. Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen glaciers in Svalbard Led i Sneg. Ice and Snow 2014, 54 (1): 5–19 doi: 10.15356/2076-6734-2014-1-5-19 [In Russian]

2. Vshivtseva T.V., Chernov R.A. Spatial distribution of snow cover and temperature in the upper layer of a polythermal glacier Led i Sneg. Ice and Snow 2017, 57 (3): 373–380 doi: 10.15356/2076-6734-2017-3-373-380 [In Russian]

3. Glazovsky A.F., Macheret Yu.Ya. Voda v lednikakh. Metody i rezul'taty geofizicheskikh i distantsionnykh issledovaniy. Water in glaciers Methods and results of geophysical and remote sensing studies M : GEOS, 2014: 528 p [In Russian]

4. Isenko E.V. Modelling of channels in cold glaciers Materialy Glyatsiologicheskikh Issledovaniy Data of Glaciological Studies 2000, 89: 194–199 [In Russian]

5. Isenko E.V., Mavlyudov B.R. On the incision rates of glacier water flow channels Materialy Glyatsiologicheskikh Issledovaniy Data of Glaciological Studies 2000, 89: 200–205 [In Russian]

6. Kazanskiy A.B. Thermodynamics of melt-water soaking into snow-firn thickness Materialy Glyatsiologicheskikh Issledovaniy Data of Glaciological Studies 1988, 61: 58–62 [In Russian]

7. Carslaw H.S. Teoriya teploprovodnosti. Theory of thermal conductivity M .-L : Gosudarstvennoye izdatel'stvo tekhniko-teoreticheskoy literatury, 1947: 288 p [In Russian]

8. Macheret Y.Y., Glazovsky A.F., Lavrentiev I.I., Marchuk I.O. Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from groundbased radio-echo sounding Led i Sneg. Ice and Snow 2019, 59 (2): 149–166 doi: 10.15356/2076-6734-20192-430 [In Russian]

9. Macheret Y.Y., Glazovsky A.F., Vasilenko E.V., Lavrentiev I.I., Matskovsky V.V. Comparison of hydrothermal structure of two glaciers in Spitsbergen and Tien Shan based on radio-echo sounding data Led i Sneg. Ice and Snow 2021, 61 (2): 165–178 doi: 10.31857/S2076673421020079 [In Russian]

10. Polyanin A.D Spravochnik po lineynym uravneniyam matematicheskoy fiziki. Handbook of linear equations of mathematical physics M : Fizmatlit, 2001: 592 p [In Russian]

11. Sosnovsky A.V., Macheret Y.Y., Glazovsky A.F., Lavrentiev I.I. Hydrothermal structure of a polythermal glacier in Spitsbergen by measurements and numerical modeling Led i Sneg. Ice and Snow 2016, 56 (2): 149–160 doi: 10.15356/2076-6734-2016-2-149-160 [In Russian]

12. Chernov R.A., Vasilyeva T.V., Kudikov A.V. Temperature regime of upper layer of the glacier East Grönfjordbreen (West Svalbard) Led i Sneg. Ice and Snow 2015, 55 (3): 38–46 doi: 10.15356/2076-6734-2015-3-38-46 [In Russian]

13. Chernov R.A., Muraviev A.Y. Contemporary changes in the area of glaciers in the western part of the Nordenskjold Land (Svalbard) Led i Sneg. Ice and Snow 2018, 58 (4): 462–472 doi: 10.15356/2076-6734-2018-4-462472 [In Russian]

14. Alley R., Dupont T., Parizek B., Anandakrishnan S. Access of surface meltwater to beds of sub-freezing glaciers: Preliminary insights Annals of Glaciology 2005, 40: 8–14 doi: 10.3189/172756405781813483

15. Colgan W., Rajaram H., Abdalati W., McCutchan C., Mottram R., Moussavi M.S., Grigsby S. Glacier crevasses: Observations, models, and mass balance implications Reviews of Geophysics 2016, 54: 119–161 doi: 10.1002/2015RG000504

16. Duddu R., Jiménez S., Bassis J. A non-local continuum poro-damage mechanics model for hydrofracturing of surface crevasses in grounded glaciers Journ of Glaciology 2020, 66 (257): 415–429 doi: 10.1017/jog.2020.16

17. Everett A., Murray T., Selmes N., Rutt I.C., Luckman A., James T.D., Clason C., O'Leary M., Karunarathna H., Moloney V., Reeve D.E. Annual down-glacier drainage of lakes and water-filled crevasses at Helheim Glacier, southeast Greenland Journ of Geophys Research: Earth Surface 2016, 121 (10): 1819–1833 doi: 10.1002/2016JF003831

18. Gilbert A., Sinisalo A., Gurung T.R., Fujita K., Maharjan S.B., Sherpa T.C., Fukuda T. The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier The Cryosphere 2020, 14 (4): 1273–1288 doi: 10.5194/tc-14-1273-2020

19. Jarvis G.T., Clarke G.K.C. Thermal effects of crevassing on Steele glacier, Yukon Territory, Canada Journ of Glaciology 1974, 13 (68): 243–254 doi: 10.3189/S0022143000023054

20. Lüthi M.P., Ryser C., Andrews L.C., Catania G.A., Funk M., Hawley R.L., Hoffman M.J., Neumann T.A. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming The Cryosphere 2015, 9 (1): 245–253 doi: 10.5194/tc-9-245-2015

21. McDowell I.E., Humphrey N.F., Harper J.T., Meierbachtol T.W. The cooling signature of basal crevasses in a hard-bedded region of the Greenland Ice Sheet The Cryosphere 2021, 15 (2): 897–907 doi: 10.5194/tc-15-897-2021

22. Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., Hagen J.O., Hock R., Kaser G., Kienholz C., Miles E.S., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B.H., Rich J., Sharp M.J., The Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers Journ of Glaciology 2014, 60 (221): 537–552 doi: 10.3189/2014JoG13J176

23. Phillips T., Rajaram H., Steffen K. Cryo-hydrologic warming: A potential mechanism for rapid thermal response of ice sheets Geophys Research Letters 2010, 37: L20503 doi: 10.1029/2010GL044397

24. Phillips T., Rajaram H., Colgan W., Steffen K., Abdalati W. Evaluation of cryo-hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, West Greenland Journ of Geophys Research: Earth Surface 2013, 118 (3): 1241– 1256 doi: 10.1002/jgrf.20079

25. Poinar K., Joughin I., Lilien D., Brucker L., Kehrl L., Nowicki S. Drainage of Southeast Greenland Firn Aquifer Water through Crevasses to the Bed Journ of Front Earth Sci 2017, 5: 5 doi: 10.3389/feart.2017.00005

26. Rubin A.M. Propagation of magma-filled cracks Annu Rev Earth Pl Sc 1995, 23 (1): 287–336 doi: 10.1146/annurev.ea.23.050195.001443

27. van der Veen C.J. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers Geophys Research Letters 2007, 34, L01501 doi: 10.1029/2006GL028385

28. Weertman J. Can a water-filled crevasse reach the bottom surface of a glacier? IASH publ 1973, 95: 139–145


Supplementary files

For citation: Chernyakov G.A., Chernov R.A. Effect of ice formation in crevasses to the temperature field in the cold layer of glacier. Ice and Snow. 2022;62(4):512-526. https://doi.org/10.31857/S2076673422040148

Views: 245

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)