Simulation of orographic precipitation’s component on the Mount Elbrus example
https://doi.org/10.31857/S2076673422040146
Abstract
A model of the orthographic component of precipitation based on the calculation of the condensation rate of water vapor in the air stream uplifting onto the mountain slope is proposed. The main assumptions of the model are: the cooling of the rising air is determined only by the adiabatic process; the orographic component of the vertical component of wind speed is generated by the relief, and its weakening with elevation is determined only by the atmospheric stratification; the proportion of precipitation from the total mass of the condensed moisture depends only on the air temperature. ERA5 reanalysis, which was previously compared with observational data, is used as initial data. The proposed model adequately reproduces the spatial and temporal variability of precipitation on the Elbrus slopes both for short episodes and on the climatic time scale (1985–2018). Comparison of the modeling results with the reconstruction of the annual accumulation of precipitation from the ice core obtained on the Western Elbrus Plateau in 2018 showed a statistically significant positive correlation. However, similar comparison with the data from the core extracted in 2009 did not give a statistically significant result. This means that the proposed model can be used as a tool for conformity between methods of accumulation reconstruction and for substantiation of their physical justification (correctness). In addition, this algorithm can be used to calculate monthly and annual sums of precipitation on mountain slopes of various exposures and to estimate annual accumulation on mountain glaciers.
About the Authors
P. A. ToropovRussian Federation
Moscow
A. A. Shestakova
Russian Federation
Moscow
J. I. Yarynich
Russian Federation
Moscow
S. S. Kutuzov
Russian Federation
Moscow
References
1. Kislov A.V., Georgiadi A.G., Alekseyeva L.I., Borodin O.P. Construction of air temperature and precipitation fields in areas with a sparse measuring network (on the example of the Lena River basin) Meteorologiya i gidrologiya. Meteorology and hydrology 2007, 8: 29–37 [In Russian]
2. Krenke A.N., Ananicheva M.D., Demchenko P.F., Kislov A.V. Metody ocenki posledstvij izmeneniya klimata dlya fizicheskih i biologicheskih system. Methods for assessing the effects of climate change on physical and biological systems V 9 Glaciers and glacial systems Moscow: Roshydromet, 2012: 360–399 [In Russian]
3. Mikhaylov A.Y. Rol' orograficheskikh vertikal'nykh dvizheniy v formirovanii klimaticheskogo polya letnikh osadkov Izvestiya Ros. Akad. Nauk. Seriya geograficheskaya. Proc of RAS Geographical series 1985, 5: 96–103 [In Russian]
4. Mikhalenko V.N., Kutuzov S.S., Lavrent'yev I.I., Toropov P.A. Ledniki i klimat El'brusa. Glaciers and climate of Elbrus Moscow – Sankt Peterburg: Nestor-History, 2020: 327 p [In Russian]
5. Oleinikov A.D., Volodicheva N.A. Winters of avalanche maximum in the Greater Caucasus for the period of instrumental observations (1968–2016) Led i Sneg. Ice and Snow 2020, 60 (4): 521–532 doi: 10.31857/S2076673420040057 [In Russian]
6. Тoropov P.А., Shestakova А.А., Polukhov А.А., Semenova А.А., Mikhalenko V.N Character of the summer meteorological regime on the Western plateau of Elbrus (the Caucasus) Led i Sneg. Ice and Snow 2020, 60 (1): 58–76 doi: 10.31857/S2076673420010023[In Russian]
7. Barry. R.G. Mountain weather and climate London: Cambridge University Press, 2008: 505 p
8. Chua S.H., Bras R.L Optimal estimators of mean areal precipitation in regions of orographic influence Journ of Hydrology 1982, 57 (1–2): 23–48 doi: 10.1016/0022–1694(82)90101–9
9. Daly C., Neilson R.P., Phillips D.L A statistical–topographic model for mapping climatological precipitation over mountainous terr Journ of Applied Meteorology and Climatology 1994, 33 (2): 140–158 doi: 10.1175/1520–0450(1994)033
10. Durran D.R., Klemp J.B On the effects of moisture on the Brunt–Väisälä freque Journ of Atmospheric Sciences 1982, 39 (10): 2152–2158 doi: 10.1175/1520–0469(1982)039
11. Elliott R.D., Hovind E.L. The water balance of orographic clouds Journ of Applied Meteorology and Climatology 1964, 3 (3): 235–239 doi: 10 1175/1520– 0450(1964)003
12. Funk C., Michaelsen J.A Simplified diagnostic model of orographic rainfall for enhancing satellite–based rainfall estimates in data–poor regions Journ of Applied Meteorology 2004, 43 (10): 1366–1378 doi: 10.1175/JAM2138.1
13. Hunt J., Snyder W.H Experiments on stably and neutrally stratified flow over a model three–dimensional hill Journ of Fluid Mechanics 1980, 96 (4): 671–704 doi: 10.1017/S0022112080002303
14. Huss M., Hock R.A new model for global glacier change and sea-level rise Journ of Frontiers in Earth Science 2015, 3: 54–67 doi: 10.3389/feart.2015.00054
15. Hutchinson M.F Interpolation of rainfall data with thin plate smoothing splines Part I: Two dimensional smoothing of data with short range correlation // Journ of Geogr Information and Decision Analysis 1998, 2 (2):139–151
16. Jiang Q., Smith R.B Cloud timescales and orographic precipitation Journ of the Atmosphere Sciences 2003, 60 (13): 1543–1559 doi: 10.1175/2995.1
17. Kozachek A, Mikhalenko V., Masson-Delmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and mt El’brus ice cores Journ of Climate of the Past 2017, 13 (5): 473–489 doi: 10.5194/cp–13–473–2017
18. Kuligowski R.J., Barros A.P High-resolution short-term quantitative precipitation forecasting in mountainous regions using a nested model Journ of Geophys Research: Atmos 1999, 104 (24): 31553–31564 doi: 10.1029/1999JD900938
19. Leung L.R., Ghan S.J A subgrid parameterization of orographic precipitation Journ of Theoretical and Applied Climatology 1995, 52 (1): 95–118 doi: 10.1007/BF00865510
20. Markowski P., Richardson Y.P Mesoscale meteorology in Midlatitudes Wiley–Blackwell 2010: 414 p
21. Mendoza V.M., Oda B., Adem J. Parametrization of the precipitation in the Northern Hemisphere and its verification in Mexico Journ of Ann Geophysicae 1998, 16 (7): 853–865 doi: 10.1007/s00585–998–0853–8
22. Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., and Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia The Cryosphere 2015, 9 (6): 2253–2270 doi: 10.5194/tc–9–2253–2070
23. Neiman P.J., Ralph F.M., White A.B., Kingsmill D.E., Persson P.O The Statistical Relationship between Upslope Flow and Rainfall in California’s Coastal Mountains: Observations during CALJET Monthly Weather Rev 2002, 130 (6):1468–1492 doi: 10.1175/1520–0493(2002)130
24. Palm S.P., Kayetha V., Yang Y., Pauly R Blowing Snow Sublimation and Transport over Antarctica from 11 Years of CALIPSO Observations The Cryosphere 2017, 11: 2555–2569 doi: 10.5194/tc–11–2555–2569
25. Rets E., Kireeva M Hazardous hydrological processes in mountainous areas under the impact of recent climate change: Case study of Terek River basin IAHS-AISH Publ 2010, 340: 126–134
26. Roe G.H., Montgomery D.R., Hallet B Orographic precipitation and the relief of mountain ranges Journ of Geophys Research: Solid Earth 2003, 108 (6): 15–21
27. Rotunno R., Houze R.A Lessons on orographic precipitation from the Mesoscale Alpine Programme Quaternary Journ of the Royal Meteorol Society 2007, 133 (625): 811–830 doi: 10.1002/qj.67
28. Sinclair M.R A Diagnostic Model for Estimating Orographic Precipitation // Journ of Applied Meteorology and Climatology 1994, 33 (10): 1163–1175 doi: 10.1175/1520–0450(1994)033
29. Smith R.B., Barstad I. A linear theory of orographic precipitation Journ of the Atmosphere Sciences 2004, 61 (12): 1377–1391 doi: 10.1175/1520–0469(2004)061
30. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century Intern Journ of Climatology 2019: 4703–4720 doi: 10.1002/joc.6101
Supplementary files
For citation: Toropov P.A., Shestakova A.A., Yarynich J.I., Kutuzov S.S. Simulation of orographic precipitation’s component on the Mount Elbrus example. Ice and Snow. 2022;62(4):485-503. https://doi.org/10.31857/S2076673422040146
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)