Роль естественных колебаний и факторов внешнего воздействия на климат в потеплении середины ХХ века в Северном полушарии


https://doi.org/10.31857/S2076673422030144

Полный текст:




Аннотация

Дан обзор существующих исследований, а также приведены основные механизмы внутренней и внешней изменчивости климата в Северном полушарии в середине XX в. Несмотря на то, что внутренняя изменчивость климатической системы, по всей видимости, это – основной механизм, объясняющий потепление середины XX в., количественная оценка вклада каждого фактора остаётся неопределённой, так как существенно зависит от начальных условий в моделях и недостатка инструментальных данных в период середины ХХ в., особенно в полярных широтах.


Об авторах

Д. Д. Бокучава
Институт географии РАН; Институт физики атмосферы им. А. М. Обухова РАН
Россия
Москва


В. А. Семенов
Институт географии РАН; Институт физики атмосферы им. А. М. Обухова РАН
Россия
Москва


Список литературы

1. Alekseev G.V., Asarin A.E., Baloshnikova J.A., Bitkov L.M., Bulygina O.N., Bugrov L.Y., Vinogradova V.V., Gavrilova S.Y., Ganushkin D.A., Ginzburg A.I., Georgievsky M.V. Vtoroj ocenochnyj doklad Rosgidrometa ob izmeneniyah klimata i ih posledstviyah na territorii Rossijskoj Federacii. The second evaluation report of Roshydromet on climate change and its consequences on the territory of the Russian Federation . Leningrad: Roshydromet, 2014: 7 . [In Russian].

2. Alekseev G.V., Danilov A.I., Kattsov V.M., Kuzmina S.I., Ivanov N.E. Changes in the area of sea ice in the Northern hemisphere in the XX and XXI centuries according to observations and modeling data . Izvestiya Ros. Akad. Nauk. Fizika atmosfery i okeana . Proc . of RAS . Physics of Atmosphere and Ocean . 2009, 45 (6): 723–735 . [In Russian].

3. Bokuchava D.D., Semenov V.A. Analysis of surface air temperature anomalies in the Northern Hemisphere in the 20th century using observational and reanalysis data . Fundamentalnaya i Prikladnaya Klimatologiya. Fundamental and Applied Climatology . 2018, 1: 28–51 . doi: 10.21513/2410-8758-2018-1-28-51. [In Russian].

4. Vize V.Y. Causes of the Arctic warming . Sovetskaya Arktika . Soviet Arctic . 1937, 1: 3–12 . [In Russian].

5. Eliseev A.V. Global methane cycle: a review. Fundamentalnaya i Prikladnaya Klimatologiya. Fundamental and Applied Climatology . 2018, 1: 52. [In Russian].

6. Zolotokrylin A.N., Titkova T.B., Mikhailov A.Yu. Climatic variations of the Arctic front and the Barents sea ice cover in winter time . Led i Sneg. Ice and Snow . 2015, 54 (1): 85–90. [In Russian].

7. Kattsov V.M., Meleshko V.P., Govorkova V.A . Models designed to assess future climate changes . Trudy Gos. Hydrophysics. Observatories. Proc . of the State Hydrophysical Observatory . 2008, 5: 112–151. [In Russian].

8. Lappo S.S., Gulev S.K., Rozhdestvenskii A.E. Krupnomasshtabnoe teplovoe vzaimodeistvie v sisteme ocean–atmosfera i energoaktivnye oblasti Mirovogo okeana. Largescale heat interaction in the ocean–atmosphere system and energyactive zones in the world ocean . Leningrad: Hydrometeoizdat, 1990: 10–15. [In Russian].

9. Malinin V.N., Vainovsky P.A. On the causes of the first warming of the Arctic in the XX century Uchenye zapiski RGGMU . Scientific notes of the Russian State Hydrometeorological University . 2018, 53: 34–55. [In Russian].

10. Matveeva T.A., Semenov V.A., Astaf’eva E.S. Arctic sea ice extent and its connection to the surface air temperature in the Northern Hemisphere . Led i Sneg. Ice and Snow . 2020, 60 (1): 134–48. [In Russian].

11. Mokhov I.I., Smirnov D.A . Diagnostics of the causal relationship of solar activity and changes in the global near-surface temperature of the Earth . Izvestiya Ros. Akad. Nauk. Fizika atmosfery i okeana. Proc . of RAS. Physics of Atmosphere and Ocean . 2008, 44 (3): 283– 293. [In Russian].

12. Popova V.V. Present-Day Changes in Climate in the North of Eurasia as a Manifestation of Variation of the Large-Scale Atmospheric Circulation . Fundam. Prikl. Klimatol. Fundamental and Applied Climatology . 2018, 1: 84–111 . doi.org/10.21513/2410-8758-2018-1-84-111. [In Russian].

13. Popova V.V., Matskovsky V.V., Mikhailov A.Y. Modern changes in the land climate of the extratropical zone of the Northern Hemisphere . Vestnik Moskovskogo Universiteta . Bulletin of the Moscow University. 2018, 1: 5. [In Russian].

14. Semenov V.A. Role of sea ice in formation of wintertime arctic temperature anomalies . Izvestiya Ros. Akad. Nauk. Fizika atmosfery i okeana. Proc . of RAS . Atmospheric and Oceanic Physics. 2014, 50 (4): 343–349. [In Russian].

15. Semenov V.A . Modern climate fluctuations caused by feed-backs in the atmosphere Arctic ice-ocean system . Fundamentalnaya i Prikladnaya Klimatologiya. Fundamental and Applied Climatology. 2015, 1 (1): 232–248. [In Russian].

16. Semenov V.A., Matveeva T.A. Changes in Arctic sea ice in the first half of the XX century: spatial and temporal reconstruction based on temperature data . Izvestiya Ros. Akad. Nauk. Fizika atmosfery i okeana. Proc . of RAS . Atmospheric and Oceanic Physics. 2020, 56 (5): 611–616. [In Russian].

17. Ambaum M.H., Hoskins B.J., Stephenson D.B. Arctic oscillation or North Atlantic oscillation? Journ . of Climate . 2001, 14 (16): 3495–3507. doi.org/10.1175/1520-0442(2001)0142.0.CO;2.

18. Barnston A.G., Livezey R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns . Monthly Weather Review . 1987, 115 (6): 1083– 1126. doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

19. Bekryaev R.V., Polyakov I.V., Alexeev V.A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming . Journ . of Climate . 2010, 23 (14): 3888–3906. doi.org/10.1175/2010JCLI3297.1.

20. Bengtsson L., Semenov V.A., Johannessen O.M. The early twentieth-century warming in the Arctic-A possible mechanism. Journ. of Climate . 2004, 17 (20): 4045–4057. doi.org/10.1175/1520-0442(2004)017<4045:TETWIT>2.0.CO;2.

21. Booth B.B., Dunstone N.J., Halloran P.R., Andrews T., Bellouin N. Aerosols implicated as a prime driver of twentieth century North Atlantic climate variability. Nature . 2012, 484 (7393): 228–232. doi.org/10.1038/nature10946.

22. Bokuchava D.D., Semenov V.A. Mechanisms of the Early 20th Century Warming in the Arctic . Earth-Science Reviews. 2021, 222: 103820.

23. Brennan M.K., Hakim G.J., Blanchard Wriggles-worth E. Arctic sea ice variability during the instrumental era. Geophys. Research Letter. 2020, 47 (7): e2019GL086843. doi.org/10.1029/2019GL086843.

24. Brönnimann S. Early twentieth-century warming. Nature Geoscience. 2009, 2 (11): 735 . doi.org/10.1038/ngeo670.

25. Chen L., Francis J., Hanna E. The «Warm Arctic / Cold continents» pattern during 1901–2010. Intern. Journ. of Climatology. 2018, 38 (14): 5245–5254. doi.org/10.1002/joc.5725.

26. Chernokulsky A., Esau I. Cloud cover and cloud types in the Eurasian Arctic in 1936–2012. Intern. Journ. of Climatology. 2019, 39 (15): 5771–5790. doi.org/10.1002/joc.6187.

27. Chylek P., Klett J.D., Dubey M.K., Hengartner N. The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability. Journ. of Climate Dynamic. 2016, 47 (9–10): 3271–3279. doi.org/10.1007/s0038-016-3025-7.

28. Compo G.P., Whitaker J.S., Sardeshmukh P.D., Matsui N., Allan R.J., Yin X., Gleason B.E., Vose R.S., Rutledge G., Bessemoulin P., Brönnimann S. The twentieth century reanalysis project . Quaternary Journ. of Royal Meteorol. Society. 2011, 137 (654): 1–28 . doi: 10.1002/qj.776.

29. Delworth T.L., Knutson T.R. Simulation of early 20th century global warming. Science. 2005, 287 (5461): 2246– 2250. doi: 10.1126/science.287.5461.2246.

30. Delworth T.L., Mann M.E. Observed and simulated multi-decadal variability in the Northern Hemisphere. Journ. of Climate Dynamic. 2000, 16 (9): 661–676. doi.org/10.1007/s003820000075.

31. Dickson R.R., Osborn T.J., Hurrell J.W., Meincke J., Blindheim J., Adlandsvik B., Vinje T., Alekseev G., Maslowski W. The Arctic ocean response to the North Atlantic oscillation. Journ. of Climate. 2000, 13 (15): 2671–2696.

32. Enfield D.B., Mestas Nuñez A.M., Trimble P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Research Letter . 2001, 15 (28–10): 2077–2080.

33. Etheridge D.M., Steele L.P., Langenfelds R.L., Francey R.J., Barnola J.M., Morgan V.I. Historical CO2 records from the Law Dome DE08, DE08-2 and DSS ice cores. Trends: a compendium of data on global change. 1998: 351–364.

34. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey, D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R. Changes in atmospheric constituents and in radiative forcing. Chapter 2. Climate change 2007: The physical science basis.

35. Hansen J., Ruedy R., Sato M., Lo K. Global surface temperature change . Reviews of Geophysics . 2010, 48 (4). doi.org/10.1029/2010RG000345.

36. Haywood J., Boucher O. Estimates of the direct and in direct radiative forcing due to tropospheric aerosols: Reviews of Geophysics . 2000, 38 (4): 513–543. doi.org/10.1029/1999RG000078.

37. Hegerl G.C., Brönnimann S., Schurer A., Cowan T. The early 20th century warming: anomalies, causes, and consequences . Wiley Interdisciplinary Review of Climate Change. 2018, 9 (4): e522. doi.org/10.1002/wcc.522.

38. Intergovernmental Panel of Climate Change (IPCC). Iii W.G. Third assessment report. Summary for policy makers. 2001.

39. Intergovernmental Panel of Climate Change (IPCC). Solomon S. The physical science basis: Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Clim. Change. 2007: Р. 996.

40. Intergovernmental Panel of Climate Change (IPCC). Stocker T.F., Qin D., Plattner G.K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. The physical science basis . Contribution of working group I to the fifth assessment report of the inter-governmental panel on climate change. Clim. Change. 2013: 1535.

41. Johannessen O.M., Bengtsson L., Miles M.W., Kuzmina S.I., Semenov V.A., Alekseev G.V., Nagurnyi A.P., Zakharov V.F., Bobylev L.P., Pettersson L.H., Hasselmann K. Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A: Dynamic Meteorol. Oceanogr. 2004, 56 (4): 328–341. doi.org/10.3402/tellusa.v56i4.14418.

42. Jones P.D., Raper S.C.B., Wigley T.M.L. Southern Hemisphere surface air temperature variations: 1851–1984. Journ. of Climate and Applied Meteorology. 1986, 25 (9): 1213–1230.

43. Kravitz B., Robock A. Climate effects of high latitude volcanic eruptions: Role of the time of year. Journ. of Geophys. Research: Atmosphere. 2011, 116: D01105. doi.org/10.1029/2010JD014448.

44. Laloyaux P., de Boisseson E., Balmaseda M., Bidlot J.R., Broennimann S., Buizza R., Dalhgren P., Dee D., Haimberger L., Hersbach H., and Kosaka Y. CERA 20C: A coupled reanalysis of the twentieth century. Journ. of Adv . Model. Earth Syst. 2018, 10 (5): 1172–1195. doi.org/10.1029/2018MS001273.

45. Latonin M.M., Bashmachnikov I.L., Bobylev L.P., Davy R. Multi-model ensemble mean of global climate models fails to reproduce early twentieth century Arctic warming. Journ. of Polar Science. 2021: 100677. doi.org/10.1016/j.polar.2021.100677.

46. Lean J.L., Rind D.H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Research Letter. 2008, 35 (18). doi.org/10.1029/2008GL034864.

47. Lemke P., Ren J., Alley R.B., Allison I., Carrasco J., Flato G., Fujii Y., Kaser G., Mote P., Thomas R.H., Zhang T. Observations: changes in snow, ice and frozen ground, Climat. Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth As-sessment Report of the Intergovernmental Panel on Climate Change. 2007: 337–383.

48. Lenssen N., Schmidt G., Hansen J., Menne M., Per-sin A., Ruedy R., Zyss D. Improvements in the GIS-TEMP uncertainty model. Journ. Geophys. Research. Atmosphere. 2019, 124 (12): 6307–6326. doi: 10.1029/2018JD029522.

49. Lindsay R., Wensnahan M., Schweiger A., Zhang J. Evaluation of seven different atmospheric reanalysis products in the Arctic Journ. of Climate. 2014, 27 (7): 2588–2606. doi.org/10.1175/JCLI-D-13-00014.1.

50. Macfarling Meure C., Etheridge D., Trudinger C., Steele P., Langenfelds R., Van Ommen T., Smith A., Elkins J. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Research Letter. 2006, 33 (14). doi.org/10.1029/2006GL026152.

51. Mantua N.J., Hare S.R., Zhang Y., Wallace J.M., Francis R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. of Amer. Meteorol. Society. 1997, 78 (6): 1069–1080. doi.org/10.1175/1520-0477(1997)0782.0.CO;2.

52. Meehl G.A., Washington W.M., Ammann C.M., Arblaster J.M., Wigley T.M.L., Tebaldi C. Combinations of natural and anthropogenic forcings in twentieth century climate. Journ. of Climate. 2004, 17 (19): 3721–3727. doi.org/10.1175/1520-0442(2004)0172.0.CO;2.

53. Meng Q., Latif M., Park W., Keenlyside N.S., Semenov V.A., Martin T. Twentieth century Walker circulation change: Data analysis and model experiments. Journ. of Climate Dynamic. 2012, 9: 1757–1773.

54. Miles M.W., Divine D.V., Furevik T., Jansen E., Moros M., Ogilvie A.E. A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Research Letter. 2014, 41 (2): 463–469. doi.org/10.1002/2013GL058084.

55. Miller R.L., Schmidt G.A., Nazarenko L.S., Tausnev N., Bauer S.E., Del Genio A.D., Kelley M., Lo K.K., Ruedy R., Shindell D.T., Aleinov I. CMIP5 historical simulations (1850–2012) with GISS Model E2. Journ. Adv. Model. 2014, 6 (2): 441–478. doi.org/10.1002/2013MS000266.

56. Morice C.P., Kennedy J.J., Rayner N.A., Winn J.P., Hogan E., Killick R.E., Dunn R.J.H., Osborn T.J., Jones P.D., Simpson I.R. An updated assessment of near surface temperature change from 1850: The HadCRUT5 data set. Journ. of Geophys. Research: Atmosphere. 2021, 126 (3): e2019JD032361. doi.org/10.1029/2019JD032361.

57. Nidheesh A.G., Lengaigne M., Vialard J., Izumo T., Unnikrishnan A.S., Cassou C. Influence of ENSO on the Pacific decadal oscillation in CMIP models. Journ. of Climate Dynamic . 2017, 49 (9): 3309–3326.

58. Nozawa T., Nagashima T., Shiogama H., Crooks S.A. Detecting natural influence on surface air temperature change in the early twentieth century. Geophys. Research Letter. 2005, 32 (20). doi.org/10.1029/2005GL023540.

59. Overland J.E., Wood K.R., Wang M. Warm Arcticcold continents: climate impacts of the newly open Arctic Sea. Journ. of Polar Research. 2011, 30 (1): 15787.

60. Pithan F., Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience. 2014, 7 (3): 181–184. doi.org/10.1038/ngeo2071.

61. Poli P., Hersbach H., Dee D.P., Berrisford P., Simmons A.J., Vitart F., Trémolet Y. ERA-20C: An atmospheric re-analysis of the twentieth century. Journ. of Climate. 2016, 29 (11): 4083–4097. doi.org/10.1175/JCLI-D-15-0556.1

62. Polyakov I.V., Alekseev G.V., Timokhov L.A., Bhatt U.S., Colony R.L., Simmons H.L., Walsh D., Walsh J.E., Zakharov V.F. Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years . Journ . of Climate . 2004, 17 (23): 4485–4497 . doi.org/10.1175/JCLI-3224.1.

63. Przybylak R., Svyashchennikov P.N., Uscka-Kowalkowska J., Wyszyński P. Solar radiation in the Arctic during the Early Twentieth Century Warming (1921–1950): Presenting a compilation of newly available data. Journ. of Climate. 2020: 1–44. doi.org/10.1175/JCLI-D-20-0257.1.

64. Rayner N.A, Parker D.E., Horton E.B., Folland C.K., Alexander L.V., Rowell D.P., Kent E.C., Kaplan A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journ. of Geophys. Research: Atmosphere. 2003, 108 (14).

65. Renwick J.A., Wallace J.M. Relationships between North Pacific wintertime blocking, El Niño and the PNA pattern. Monthly weather review. 1996, 124 (9): 2071–2076.

66. Ritchie H., Roser M., Rosado P. CO2 and greenhouse gas emissions. Our world in data. 2020.

67. Roe G. Feedbacks, timescales, and seeing red . Annual Review of Earth . Planetary Science. 2009, 37: 93–115. doi.org/10.1146/annurev.earth.061008.134734.

68. Robock A. Volcanic eruptions and climate. Review Geophys. 2000, 38 (2): 191–219. doi.org/10.1029/1998RG000054.

69. Rohde R. Comparison of Berkeley Earth, NASA GISS, and Hadley CRU averaging techniques on ideal synthetic data. Berkeley Earth Memo. 2013: 013.

70. Semenov V.A., Bengtsson L. Modes of the wintertime Arctic temperature variability. Geophys. Research Letters. 2003, 30 (15). doi.org/10.1029/2003GL017112.

71. Semenov V.A., Latif M. The early twentieth century warming and winter Arctic sea ice. The Cryosphere . 2012, 6 (6): 1231–1237 . https://doi.org/10.5194/tc-6-1231-2012,2012.

72. Semenov V.A., Latif M., Dommenget D., Keenly-side N.S., Strehz A., Martin T., Park W. The impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature. Journ. of Climate. 2010, 23 (21): 5668–5677. doi.org/10.1175/2010JCLI3347.1.

73. Semenov V.A., Latif M., Jungclaus J.H., Park W. Is the observed NAO variability during the instrumental record unusual? Geophys. Research Letters. 2008, 35: L11701.

74. Shindell D., Faluvegi G. Climate response to regional radiative forcing during the twentieth century. Nat . Geoscience. 2009, 2 (4): 294–300. doi.org/10.1038/ngeo473.

75. Shiogama H., Nagashima T., Yokohata T., Crooks S.A., Nozawa T. Influence of volcanic activity and changes in solar irradiance on surface air temperatures in the early twentieth century. Geophys. Research Letter. 2006, 33 (9). doi.org/10.1029/2005GL025622.

76. Sigurdsson H. Evidence of volcanic loading of the atmosphere and climate response. Palaeogeography. Palaeoclimatology. Palaeoecology. 1990, 89 (3): 277–289. doi.org/10.1016/0031-0182(90)90069-J.

77. Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Li.C., Lien V.S., Olsen A., Omar A.M., Otterå O.H., Risebrobakken B. The role of the Barents Sea in the Arctic climate system. Review Geophys. 2013, 51 (3): 415–449. doi.org/10.1002/rog.20017.

78. Stenseth N.C., Ottersen G., Hurrell J.W., Mysterud A., Lima M., Chan K.S., Yoccoz N.G., Ådlandsvik B. Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proceedings of the Royal Society of London. Series B: Biolog. Science. 2003, 270 (1529): 2087–2096.

79. Stephenson D.B., Wanner H., Brönnimann S., Luterbacher J. The history of scientific research on the North Atlantic Oscillation. Geophys. Monography. Amer. Geophys. Union. 2003, 134: 37–50. doi.org/10.1029/134GM02.

80. Stolpe M.B., Medhaug I., Knutti R. Contribution of Atlantic and Pacific multidecadal variability to twentieth-century temperature changes. Journ. of Climate. 2017, 30 (16): 6279–6295. doi.org/10.1175/JCLI-D-16-0803.1.

81. Straus D.M., Shukla J. Does ENSO force the PNA? Journ. of Climate. 2002, 15 (17): 2340–2358.

82. Svendsen L., Keenlyside N., Bethke I., Gao Y., Omrani N.E. Pacific contribution to the early twentieth-century warming in the Arctic. National Climate Change. 2018, 8 (9): 793–797 . doi.org/10.1038/s41558-018-0247-1.

83. Suo L., Otterå O.H., Bentsen M., Gao Y., Johannessen O.M. External forcing of the early 20th century Arctic warming. Tellus A: Dynamic. Meteorology Oceanography. 2013, 65 (1): 20578. doi.org/10.3402/tellusa.v65i0.20578.

84. Tans P., Keeling R. Annual mean atmospheric CO2 values for Mauna Loa from Pieter Tans, NOAA/ESRL and Dr. Ralph Keeling, Scripps Institution of Oceanography: https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html, last access: 24th April 2020.

85. Titchner H.A., Rayner N.A. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. Journ. of Geophys. Research: Atmosphere. 2014, 119 (6): 2864–2889.

86. Tokinaga H., Xie S.P., Mukougawa H. Early 20th century Arctic warming intensified by Pacific and Atlantic multidecadal variability. PNAS. 2017, 114 (24): 6227–6232. doi.org/10.1073/pnas.1615880114.

87. Undorf S., Bollasina M.A., Hegerl G.C. Impacts of the 1900-74 increase in anthropogenic aerosol emissions from North America and Europe on Eurasian summer climate. Journ. of Climate. 2018, 31 (20): 8381–8399.

88. Walsh J.E., Chapman W.L. 20th century sea-ice variations from observational data. Annals of Glaciology. 2001, 33: 444–448.

89. Walsh J.E., Fetterer F., Scott Stewart J., Chapman W.L. A database for depicting Arctic sea ice variations back to 1850. Geogr. Review. 2017, 107 (1): 89–107.

90. Wang B., Liu J., Kim H.J., Webster P.J., Yim S.Y., Xiang B. Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc. of the National Academy of Sciences. 2013, 110 (14): 5347–5352.

91. Wang M., Overland J.E., Kattsov V., Walsh J.E., Zhang X., Pavlova T. Intrinsic versus forced variation in coupled climate model simulations over the Arctic during the twentieth century. Journ. of Climate. 2007, 20 (6): 1093–1107. doi.org/10.1175/JCLI4043.1.

92. Webb E.J., Magi B.I. The Ensemble Oceanic Niño Index. Intern. Journ. of Climatology. 2022: 1–21. doi.org/10.1002/joc.7535.

93. Wegmann M., Brönnimann S., Compo G.P. Tropospheric circulation during the early twentieth century Arctic warming. Journ. of Climate Dynamic. 2017, 48 (7–8): 2405–2418. doi.org/10.1007/s00382-016-3212-6.

94. Wood K.R., Overland J.E. Early 20th century Arctic warming in retrospect. Intern. Journ. of Climatology. 2010, 30 (9): 1269–1279. doi.org/10.1002/joc.1973.

95. Yamanouchi T. Early 20th century warming in the Arctic: A review. Polar Research. 2011, 5 (1): 53–71. doi.org/10.1016/j.polar.2010.10.002.

96. Yu B., Zwiers F.W. The impact of combined ENSO and PDO on the PNA climate: A 1,000-year climate modling study. Journ. of Climate Dynamic. 2007, 29 (7): 837–851.

97. Zhang Y., Wallace J.M., Battisti D.S. ENSO-like interdecadal variability: 1900–93. Journ. of Сlimate. 1997, 10 (5): 1004–1020.


Дополнительные файлы

Для цитирования: Бокучава Д.Д., Семенов В.А. Роль естественных колебаний и факторов внешнего воздействия на климат в потеплении середины ХХ века в Северном полушарии. Лёд и Снег. 2022;62(3):455-474. https://doi.org/10.31857/S2076673422030144

For citation: Bokuchava D.D., Semenov V.A. The role of natural fluctuations and factors of external forcing in the Early 20th Century Warming in Northern Hemisphere. Ice and Snow. 2022;62(3):455-474. (In Russ.) https://doi.org/10.31857/S2076673422030144

Просмотров: 488

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)