Change of sea ice content in the Arctic and the associated climatic effects: detection and simulation


https://doi.org/10.15356/2076-6734-2013-2-53-62


Abstract

Modeling results of the impact of sea surface temperature and sea ice extent changes over the last decades on the formation of weather and climate anomalies are presented. It was found that the Arctic sea ice area reduction may lead to anti-cyclonic regimes’ formation causing anomalously cold winters in particular on the Russian territory. Using simulation with an atmospheric general circulation model, it is shown that the Early 20th Century Warming must have been accompanied by a large negative Arctic sea ice area anomaly in winter time. The results imply a considerable role of long-term natural climate variations in the modern sea ice area decrease. Estimates of the possible probability’s changes of the dangerous events of strong winds and high waves in the Arctic basin and favorable navigation conditions for the Northern Sea Route in the 21st century are made based on numerical model calculations. An increase of extreme wave height is found to the middle of the 21st century for Kara and Chukchi Seas as a consequence of prolonged run length and increased surface winds.

About the Authors

I. I. Mokhov
Obukhov Institute of Physics of Atmosphere, Russian Academy of Sciences, Moscow
Russian Federation


V. A. Semenov
Obukhov Institute of Physics of Atmosphere, Russian Academy of Sciences, Moscow
Russian Federation


V. Ch. Khon
Obukhov Institute of Physics of Atmosphere, Russian Academy of Sciences, Moscow
Russian Federation


F. A. Pogarsky
Obukhov Institute of Physics of Atmosphere, Russian Academy of Sciences, Moscow
Russian Federation


References

1. Alekseev G.V., Danilov A.I., Katsov V.M., Kuzmina S.I., Ivanov N.E. Changes of sea ice area in the Northern Hemisphere in 20th and 21st centuries according to the data of observation and modeling. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the RAS, Physics of Atmosphere and Ocean. 2009, 45 (6): 723–735. [In Russian].

2. Bochkov Yu.A. Retrospective of water temperature in the layer 0–200 m at the cross-section “Kola Meridian” in the Barents Sea (1900–1981). Trudy PINRO. 1982: 113–122. [In Russian].

3. Mokhov I.I. Action as an integral characteristics of climatic structures. Assessments for the atmospheric blockings. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2006, 409 (3): 403–406. [In Russian].

4. Mokhov I.I. Peculiarities of the formation of summer heat in 2010 at the European part of Russia in context of general climate changes and their anomalies. Izvestiya Ross. Akad. Nauk. Fizika atmosfery i okeana. Proc. of the RAS, Physics of Atmosphere and Ocean. 2011, 47 (6): 709–716. [In Russian].

5. Mokhov I.I., Petukhov V.K. Blockings and trends of their changes. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 1997, 337 (5): 687–689. [In Russian].

6. Mokhov I.I., Smirnov D.A., Karpenko A.A. Estimation of relationship the global near surface temperature and different natural and anthropogenic factors on the basis of observation data. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2012, 443 (2): 225–231. [In Russian].

7. Mokhov I.I., Akperov M.G., Prokofieva M.A., Timazhev A.A., Lupo A.P., Le Tret E. Blockings in the Northern Hemisphere and Euro-Atlantic region: estimations of changes according to data of reanalysis and model calculations. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2013, 449 (5): 582–586. [In Russian].

8. Semenov V.A. Influence of oceanic inflow in the Barents Sea to the climate variability in Arctic. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2008, 418 (1): 106–109. [In Russian].

9. Semenov V.A., Mokhov I.I., Latif M. Influence of ocean surface temperature and sea ice borders to the change of regional climate in Eurasia over the last decades. Proc. of the RAS, Physics of Atmosphere and Ocean. 2012, 48 (4): 403–421. [In Russian].

10. Khon V.Ch., Mokhov I.I. Climatic changes in Arctic and possible conditions of Arctic sea navigation in 21st century. Proc. of the RAS, Physics of Atmosphere and Ocean. 2010, 46 (1): 19–25. [In Russian].

11. Bengtsson L., Semenov V.A., Johannessen O.M. The Early Twentieth Century Warming in the Arctic – A possible mechanism. Journ. of Climate. 2004, 17: 4045–4057.

12. Brohan P., Kennedy J.J., Harris I., Tett S.F.B., Jones P.D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journ. of Geophys. Research: Atmospheres. 2006, 111. D12106. Doi:10.1029/2005jd006548.

13. Delworth T.L., Knutson T.R. Simulation of early 20th century global warming. Science. 2000, 287: 2246–2250.

14. Dorn W., Dethloff K., Rinke A. Limitations of a coupled regional climate model in the reproduction of the observed Arctic sea-ice retreat. The Cryosphere. 2012, 6: 985–998. doi:10.5194/tc-6-985-2012.

15. Graversen R.G., Mauritsen T., Tjernström M., Källen E., Svensson G. Vertical structure of recent Arctic warming. Nature. 2008, 541: 53–56. doi:10.1038/nature06502.

16. Hansen J., Ruedy R., Glascoe J., Sato M. GISS analysis of surface temperature change. Journ. of Geophys. Research. 1999, 104 (D24): 30997–31022.

17. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D. The NCEP/NCAR 40-ear reanalysis project.Bull. of the American Meteorological Society. 1996, 77: 437–470.

18. Khon V.C., Mokhov I.I., Latif M., Semenov V.A., Park W. Perspectives of Northern Sea Route and Northwest Passage in the 21st century. Climatic Change. 2010, 100: 757–768. doi:10.1007/s10584-009-9683-2.

19. Khon V.C., Mokhov I.I., Pogarsky F.A. Climate change in Arctic and sea wave activity in the 21st century from model simulations. Research Activities in Atmospheric and Oceanic Modelling. Еd. A. Zadra. Rep. №. 42. S. 7. WGNE, WMO. 2012: 9–10.

20. Knight J.R., Allan R.J., Folland C.K., Vellinga M., Mann M.E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Research Letters. 2005, 32. doi: 10.1029/2005gl024233.

21. Lemke P., Ren J., Alley R.B., Allison I., Carrasco J., Flato G., Yoshiyuki F., Kaser G., Mote P., Thomas R.H., Zhang J. Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Еds S. Solomon et al. Cambridge Univ.: Press. Cambridge. 2007: 337–383.

22. Lupo A.R., Oglesby R.J., Mokhov I.I. Climatological features of blocking anticyclones: a study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres. Climate Dynamics. 1997, 13: 181–195.

23. Otterå O. H., Bentsen M., Drange H., Suo L. External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience. 2010, 3: 688–694. doi: 10.1038/NGEO0955.

24. Petoukhov V., Semenov V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. Journ. of Geophys. Research: Atmospheres. 2010, 115: D21111. doi:10.1029/2009JD013568.

25. Polyakov I.V., Alekseev G.V., Bekryaev R.V., Bhatt U.S., Colony R., Johnson M.A., Karklin V.P., Walsh D., Yulin A.V. Long-term ice variability in Arctic marginal seas. Journ. of Climate. 2003, 16: 2078–2085.

26. Rayner N.A., Parker D.E., Horton E.B., Folland C.K., Alexander L.V., Rowell D.P., Kent E. C., Kaplan A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journ. of Geophys. Research. 2003, 108 (D14). doi: 10.1029/2002jd002670.

27. Rinke A., Dethloff K. Simulated circum-Arctic climate changes by the end of the 21st century. Global and Planetary Change. 2008, 62: 173–186.

28. Roeckner E., Bäuml G., Bonaventura L., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kirchner I., Kornblueh L., Manzini E., Rhodin A., Schlese U., Schulzweida U., Tompkins A. The atmospheric general circulation model ECHAM 5. Part I: Model description. MPI Rep. V. 349. Hamburg: Max Planck Institute of Meteorology, 2003: 127 p.

29. Schlichtholz P. Influence of oceanic heat variability on sea ice anomalies in the Nordic Seas. Geophys. Research Letters. 2011, 38: L05705. doi:10.1029/2010GL045894.

30. Semenov V.A., Latif M., Dommenget D., Keenlyside N.S., Strehz A., Martin T., Park W. The impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature. Journ. of Climate. 2010, 23: 5668–5677.

31. Tolman H.L., Chalikov D.V. Source terms in a third-generation wind-wave model. Journ. of Phys. Oceanography. 1996, 26: 2497–2518.

32. Young I.R., Zieger S., Babanin A.V. Global trends in wind speed and wave height. Science. 2011, 332: 451–455.


Supplementary files

For citation: Mokhov I.I., Semenov V.A., Khon V.C., Pogarsky F.A. Change of sea ice content in the Arctic and the associated climatic effects: detection and simulation. Ice and Snow. 2013;53(2):53-62. https://doi.org/10.15356/2076-6734-2013-2-53-62

Views: 1434

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)