УДК 551.324. doi: 1031857/S2076673421010070

Состояние Шапшальского центра оледенения (Восточный Алтай) в 2015 году

© 2021 г. Д.А. Ганюшкин^{1*}, О.С. Конькова¹, К.В. Чистяков¹, А.А. Екайкин^{1,2}, И.В. Волков¹, Д.В. Банцев¹, А.В. Терехов², Е.П. Кунаева^{1,3}, Ю.Н. Курочкин¹

¹Санкт-Петербургский государственный университет, Санкт-Петербург, Россия; ²Арктический и Антарктический институт, Санкт-Петербург, Россия; ³Ленинградский государственный университет имени А.С. Пушкина, Пушкин, Россия *d.ganyushkin@spbu.ru

The state of the Shapshalsky glacierization center (Eastern Altai) in 2015

D.A. Ganyushkin^{1*}, O.S. Konkova¹, K.V. Chistyakov¹, A.A. Ekaykin^{1,2}, I.V. Volkov¹, D.V. Bantcev¹, A.V. Terekhov², E.P. Kunaeva^{1,3}, Yu.N. Kurochkin¹

¹Saint-Petersburg State University, St. Petersburg, Russia; ²Arctic and Antarctic Research Institute, St. Petersburg, Russia; ³Pushkin Leningrad State University, Pushkin, Russia

d.ganyushkin@spbu.ru

Received May 19, 2020 / Revised July 13, 2020 / Accepted December 22, 2020

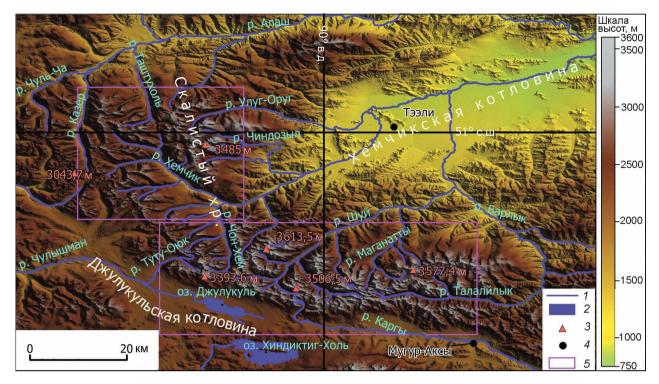
Keywords: recent glaciation, small glaciers, Altai-Sayan mountain region, dispersed glacierization.

Summary

Catalogues and maps of glaciers (for 2015) of Shapshal Glacier Center, located in the eastern part of the Russian Altai, have been created based on the first field glaciological observations and space images interpretation. In total 123 glaciers with the total area of 14.07 km² have been allocated. In comparison with the data from the Glacier Inventory of the USSR (1955–1965), the total area of the glaciers has decreased by more than 2 times. The lower limit of glacier development is 2475 m, to the south-east of the region it rises by 1 km, the height of the firm line rises from 2860 m to 3460 m, respectively. Small glaciers prevail (70% of glaciers have an area less than 0.1 km², the area of the largest glacier is 0.9 km²). In terms of quantity and area, cirque glaciers predominate, there are no valley glaciers. The largest numbers of glaciers have northern and northeastern exposure, with the largest areas of glaciers concentrated on the north-eastern slopes. The highest glaciation intensity has been detected on the eastern slope of the Skalistiy Ridge and the northeastern slope of the southern part of the Shapshalsky Ridge in the upper reaches of the Chon-Khem River, which are optimal for glaciers by a combination of mountain heights and position relative to moisture-bearing atmospheric flows. To the west of these areas, intensity of glacierization decreases due to lower mountain heights, to the east – due to lower precipitation. In general, with low (0.1 km⁻¹ and less) intensity of glacierization, the Shapshal Centre is an area of dispersed glaciation, most glaciers of which are on the verge of disappearance.

Citation: Ganyushkin D.A., Konkova O.S., Chistyakov K.V., Ekaykin A.A., Volkov I.V., Bantcev D.V., Terekhov A.V., Kunaeva E.P., Kurochkin Yu.N. The state of the Shapshalsky glacierization center (Eastern Altai) in 2015. *Led i Sneg.* Ice and Snow. 2021. 61 (1): 38–57. [In Russian]. doi: 1031857/S2076673421010070.

Поступила 19 мая 2020 г. / После доработки 13 июля 2020 г. / Принята к печати 22 декабря 2020 г.


Ключевые слова: современное оледенение, малые ледники, Алтае-Саянская горная страна, дисперсное оледенение.

Получены новые карты и каталог ледников мало исследованного Шапшальского центра оледенения на Восточном Алтае. По состоянию на 2015 г. здесь насчитывалось 123 ледника суммарной площадью 14,07 км². По сравнению с данными 1955–1965 гг. суммарная площадь ледников сократилась более чем вдвое. Преобладают малые каровые ледники северо-восточной и северной экспозиций. Площади ледников и интенсивность оледенения убывают с северо-запада на юго-восток.

Введение

Под Шапшальским центром оледенения мы понимаем ледники собственно Шапшальского хребта, хребтов Цаган-Шибэту и Скалистый, а также их отрогов. Географическое положение Шапшальского горного хребта и его юго-восточного продолжения — хр. Цаган-Шибэту — примечательно по ряду причин. Во-первых, распо-

лагаясь в самом центра Алтае-Саянской горной страны, они находятся на стыке систем горных хребтов Алтая и Саян, представляя собой своеобразный мост между ними: субмеридиональный Шапшальский хребет относится к Алтаю, а субширотный хр. Цаган-Шибэту — к системе Саян-Танну-Ола. Во-вторых, они служат водоразделом между бассейнами рек Оби (верховья р. Чулышман), Енисея (верховья р. Хемчик) и

Рис. 1. Положение района исследования: 1 – реки; 2 – озёра; 3 – вершины; 4 – ближайшие метеостанции; 5 – границы территории, показанной на рис. 2 **Fig. 1.** The position of the study area: 1 – rivers; 2 – lakes; 3 – peaks; 4 – nearest weather stations; 5 – borders of the territory shown in Fig. 2

бессточными котловинами Монголии (р. Каргы, бассейн оз. Урэг-Нур). В-третьих, они располагаются на стыке западно-сибирского типа климата (согласно М.В. Тронову [1]), при котором значительное количество осадков выпадает в условиях западного переноса на протяжении всего года, и монгольского климата, для которого характерна повышенная континентальность, малое количество осадков с чётко выраженным летним максимумом.

Служащее водоразделом между бассейном р. Енисей с северо-востока, бассейном р. Обь с запада и зоной внутреннего стока с южной стороны возвышение Шапшальского хребта и хр. Цаган-Шибэту представляет собой вытянутую с северо-запада на юго-восток дугу протяжённостью около 260 км, обращённую выпуклой стороной на юго-запад (рис. 1). Юго-западные склоны хребтов крутые и короткие, слабо расчленённые речными долинами, напротив, северо-восточные склоны — относительно протяжённые и сильно изрезанные; здесь к основному водоразделу причленяются хребты и горные массивы меньшего порядка. Примерно 160 из

260 км общего протяжения водораздела приходятся на долю Шапшальского хребта, который начинается на стыке Абаканского хребта и Западного Саяна и протягивается в южном, а затем в юго-восточном направлении вплоть до перевала Шапшал (3109 м). Максимальная высота северной части хребта – в пределах 2500-3200 м, в южной части наиболее высокие вершины достигают высоты 3400-3500 м (высшая точка 3507 м). Ещё более высокие отметки (до 3613,5 м, гора Ак-Оюк) имеют отдельные отроги, протягивающиеся от южной части хребта на северо-восток. Субширотное продолжение Шапшальского хребта – хр. Цаган-Шибэту – в западной части превышает высоту 3400 м, к востоку высотные отметки вершин постепенно снижаются до 3200-3000 м. Как и на Шапшальском хребте, с севера к нему примыкают отроги и отдельные горные массивы, местами превышающие высоты основного водораздела.

В северной части исследуемой территории расположено относительно изолированное горное поднятие — Скалистый хребет и его отроги, отделённые от системы Шапшальского хребта

глубокой долиной рек Хемчик, Малый Хемчик и Таштухоль. Высоты здесь достигают 3485 м (гора Менгулек) (см. рис. 1). В гидрологическом отношении большая часть исследуемого района (98% современных ледников) относится к бассейну р. Енисей (бассейны верховьев р. Хемчик и Алаш), хотя захватывает и бассейн р. Обь (верховья р. Чулышман), а также бассейн внутреннего стока (верховья р. Каргы, текущей в бессточное оз. Урэг-Нур; современные ледники здесь отсутствуют, хотя они существовали здесь в малый ледниковый период.

Климатические условия данной территории изvчены слабо. Ближайшие метеостанции (ГМС) — Тээли (абсолютная высота 983 м) и Мугур-Аксы (абсолютная высота 1830 м) расположены в Хемчикской котловине и в долине р. Каргы соответственно. Отметим, что, располагаясь на расстоянии 40-60 км от ледниковых высокогорий и находясь в их орографической тени, они дают лишь приближённое представление о климатических условиях существования ледников. Исходя из данных ГМС, климат территории можно характеризовать как холодный и аридный. Среднегодовая температура за весь период наблюдений (с 1966 по 2018 г.) для ГМС Мугур-Аксы составила -2,3 °C, для ГМС Тээли -1,5 °C (1961-2018 гг.). Зимой преобладает юго-западное направление атмосферного переноса, летом — западное и северо-западное, при этом с высотой повторяемость юго-западных ветров растёт [2]. Среднегодовое количество осадков невелико – 144 и 196 мм соответственно. Увеличение количества осадков на ГМС Тээли по сравнению с ГМС Мугур-Аксы, несмотря на большую относительную высоту последней, отражает общий рост количества осадков с юга на север, что соответствует переходу от монгольского к западно-сибирскому типам климата. В западно-северо-западном направлении, откуда идёт основной приток влагонесущих потоков через долину р. Чулышман, увеличение осадков должно быть выражено лучше, но, к сожалению, для этого участка практически полностью отсутствуют метеоданные. Существуют оценки количества осадков на западном склоне Шапшальского хребта по гидрологическим данным. Согласно им, количество осадков здесь равно 800-1000 мм [3, 4]. По гляциоклиматическим расчётам, на территории Шапшальского хребта годовое количество осадков на высоте границы питания ледников достигает 1020 мм [5].

Постановка проблемы

Первые наблюдения ледников Шапшальского хребта связаны с исследованиями В.В. Сапожникова, впервые закартировавшего два ледника к востоку от перевала Шапшал [6]. Начало работ по обзору оледенения, основанному на анализе топографических карт и аэрофотоснимков, относится к началу 1960-х годов [7, 8]. В работе Е.Д. Донченко было проанализировано сокращение ледников с максимума малого ледникового периода. Наиболее детальное исследование современного оледенения — это работа, посвящённая бассейну р. Хемчик в одном из разделов Каталога ледников СССР [2], содержащего информацию о ледниках за 1955—1965 гг.

Новые материалы о ледниках этого региона появились в последние годы благодаря пополнению базы данных GLIMS и Глобального каталога ледников RGI [9, 10]. Глобальный каталог ледников RGI-6 содержит данные по состоянию на 2011 г. Тем не менее, со времён публикации Е.Д. Донченко в 1962 г. не появилось никаких работ, посвящённых анализу состояния оледенения региона, несмотря на произошедшие за полвека значительные изменения ледников Алтае-Саянского региона [11, 12]. Так, никакого анализа данных в RGI-6 по этому району нет. Кроме того, сами данные были получены по снимкам Landsat с разрешением 30 м, что для идентификации малых ледников (площади ледников региона не превышают 0,9 км²) недостаточно и приводит к существенным неточностям. Отметим, что использование современных снимков высокого разрешения позволяет в настоящее время с большей точностью определить новейшее состояние ледников и даже дополнить Каталог современных ледников новыми, ранее не обнаруженными ледниками.

Современное оледенение Шапшальского центра пока изучено недостаточно. В то же время малые ледники служат надёжным индикатором климатических изменений, о которых для данной территории информации весьма мало из-за недостаточного числа ГМС и их расположения в котловинах. Велика и гидрологическая роль ледников, которые питают большое число рек в истоках Енисея и Оби. Наконец, сокращение ледников вызывает активизацию экзогенных процессов, а также образование и прорывы приледниковых озёр. Информация о современ-

Таблица 1. Спутниковые снимки, использованные в работе

Индекс (ID); режим: Π — панхроматический; M — мультиспектральный	Дата съёмки	Спутник	Пространственное разрешение, м
201509110426017_E090N51_06742_7933; Π			1,5
201509110426017_E090N51_06742_7933; M			6,0
201509110426017_E090N51_06742_7934; П	11.00.2015 =	SPOT 6	1,5
201509110426017_E090N51_06742_7934; M	11.09.2015 г.	SPO1 6	6,0
201509110427276_E090N50_02602; Π			1,5
201509110427276_E090N50_02602; M			6,0
5 218-248 14/07/21 04:20:49 1 J; M	21.07.2014 г.		10
5 218-247 12/09/02 05:07:47 1 T; Π		SPOT 5	5
5 217-248 12/09/02 05:07:55 1 Т; П	02.09.2012 г.	SPO1 3	5
5 216-247 12/09/12 05:15:09 1 Т; П			5
1030010043AA2F00; M	26.06.2015 г.	World View-2	1,8
10300100469CBE00; M	28.07.2015 г.	World view-2	1,8
101001000FD0B800; M	18.07.2012 г.	Quick Bird	2,4
L4143025_02519890919; M	19.09.1989 г.	Landsat-4	30
L71143025_02520010904; M	04.09.2001 г.		15
L71143025_02520100828; M	28.08.2010 г.	Landsat-7	15
LE71430242015206NPA00; M	25.07.2015 г.	Lanusat-/	30, 15
LE71440242015213NPA00; M	01.08.2015 г.		30, 15
LC81430252015214LGN01; M	02.08.2015 г.	Landsat-8	30, 15
LE71420252015215EDC00; M	03.08.2015 г.	Landsat-7	30, 15
LC81440242015221LGN01; M	09.08.2015 г.	Landsat-8	30, 15
LE71430252015222NPA00; M	10.08.2015 г.	Landsat-7	30, 15
LC81420252015223LGN01; M	11.08.2015 г.	Landsat-8	30, 15
LC81430252015230LGN01; M	18.08.2015 г.	Lanusat-o	30, 15
LE71420252015231EDC00; M	19.08.2015 г.	Landsat-7	30, 15
LC81420252015239LGN01; M	27.08.2015 г.		30, 15
LC81430252015246LGN01; M	03.09.2015 г.	Landsat-8	30, 15
LC81440242015253LGN01; M	10.09.2015 г.		30, 15
LE71430252015254NPA00; M	11.09.2015 г.	Landsat-7	30, 15
LC81420252015255LGN01; M	12.09.2015 г.		30, 15
LC81430252015262LGN01; M	19.09.2015 г.	Landsat-8	30, 15
LC81430252015278LGN02; M	05.10.2015 г.		30, 15

ных ледниках необходима для исследований в каждом из перечисленных направлений. Наша работа призвана заполнить отмеченные пробелы в изученности ледников данной территории.

Материалы и методы

Основой работы послужило дешифрирование в ручном режиме космических снимков и аэрофотоснимков, а также результаты полевых работ 2016 г., которые были проведены на втором по величине леднике данной территории — N o 54. Площади ледников определяли на основе

снимков SPOT 6 от 11.09.2015 г. (табл. 1), которые обеспечивали полное покрытие исследуемой территории. Остальные снимки играли вспомогательную роль (определение высоты фирновой границы, правильная интерпретация участков, сильно затенённых, закрытых облачностью или сезонным снежным покровом на снимках SPOT 6). Снимки SPOT 6 получены от компании Сканекс с первичной радиометрической коррекцией и ортотрансформацией по SRTM 90 м. Далее авторы настоящей статьи использовали программный комплекс ScanEx Image Processor для фотограмметрической и тематической обработки изображений.

Были выполнены: радиометрическая обработка изображений; улучшение пространственного разрешения (Pan-sharpening); фильтрация изображений; автоматическая систематическая геометрическая коррекция растровых данных; ортотрансформирование по цифровой модели рельефа SRTM 3 (The NASA Version 3.0 SRTM Global 1 arc second). Кроме того, определена и установлена проекция UTM WGS 84 с автоматическим определением зоны.

Дешифрирование проводилось в программной среде GIS — Mapinfo и ArcGIS. При дешифрировании ледников была принята минимальная площадь для картирования $0,01 \text{ км}^2$. Систематическая ошибка составляла ± 1 пиксел (1,5 м). Она вычислялась по формуле [13]

$$A_{er} = 100\% (nm)/A_{el}, \tag{1}$$

где A_{er} — ошибка, %; n — число пикселей; m — пространственное разрешение снимка, выраженное в виде площади пикселя, M^2 ; A_{gl} — площадь ледника, M^2 .

По результатам расчётов с помощью базовых снимков, использовавшихся для дешифрирования (SPOT 6, панхроматические), максимальная ошибка равна 16,0%, средняя -4,2%. На участках, где не велись полевые наблюдения, граница между ледниками и мёртвым льдом находилась при помощи индикаторов, определённых в работе [14]: 1) индикаторы активного льда – сглаженный характер скоплений обломочного материала на его поверхности, его линейная вытянутость в плане, связанная с движением, обтекание его водотоками, как правило, сходящимися к нижней точке ледника; 2) индикаторы мёртвого льда - неровная поверхность скоплений обломочного материала, термокарстовые водоёмы на его поверхности, несходимость водотоков и наличие пионерной растительности. Добавим ещё один признак мёртвого льда — уход водотоков в тоннели с последующим выходом ниже по склону [10]. Часто при дешифрировании космических снимков возникают ошибки, связанные с наличием смежных с ледниками заснеженных поверхностей и участков затенения. Чтобы избежать их, использовали снимки, сделанные в конце сезона абляции, в период наименьшей заснеженности. Кроме того, в качестве вспомогательного средства рассматривались снимки тех же территорий, полученные в другие

моменты времени и с другим углом падения солнечных лучей.

Для составления Каталога ледников использовалась глобальная цифровая модель рельефа SRTM 3 (The NASA Version 3.0 SRTM Global 1 arc second) [15]. Минимальные, максимальные высоты, средние уклоны, экспозиции ледников определяли автоматически на основе ЦМР в программе Global Mapper v.18.0 (digitizer tool). С целью верификации данных, полученных по дистанционным материалам, применяли полевые материалы от 21.07.2016 г., когда мы посещали ледник № 78 — второй по площади ледник исследуемой территории. Именно тогда были проведены GPS-привязка языка ледника и закладка реперов, а также сделано GPS-маркирование его границы питания. Выполняли также наземновизуальные наблюдения и фотографирование соседних ледников (№ 79, 80). Вспомогательную роль при составлении Каталога играли топографические карты масштаба 1:100 000 (определение бассейновой принадлежности ледников). На базовых снимках SPOT 6 значительная часть области абляции ледников покрыта нерастаявшим свежим снегом (хотя на неледниковых поверхностях снег не сохранился, вероятно, снимки были сделаны через 1-2 дня после снегопада), что не позволяет определить на них высоты фирновой линии. Для этого мы использовали спутниковые снимки Landsat-7 и -8, сделанные в 2015 г.

Согласно нашим наблюдениям, на территории расположенного поблизости горного массива Монгун-Тайга сезон абляции заканчивается в третьей декаде июля или в первой половине августа [16]. Это справедливо и для условий 2015 г. Были проанализированы доступные снимки Landsat. На снимках от 25 июля фирновая линия достаточно чётко прослеживается на относительно крупных ледниках. На снимке Landsat-7 от 1 августа видны некоторые ледники хр. Скалистый, однако они находятся на периферии снимка и изображение испорчено дефектами съёмки (пропуски). На снимках от 2, 3, 9, 10 и 11 августа ледники закрыты облачностью. На снимках от 18 августа и последующих (19 и 27 августа, 11 и 12 сентября) ледники почти полностью или полностью покрыты свежим снегом, на некоторых снимках они не видны из-за облачности (3, 19 сентября), на снимке от 5 октября снег лежит уже по краям горных котловин.

Поскольку фирновая граница хорошо прослеживается на снимке WorldView-2 от 28.07.2015 г.. но не видна на снимке SPOT 6 от 9 сентября 2015 г., сезон абляции, видимо, закончился между 28 июля и 18 августа. Причём, со 2 августа преобладали облачная погода и снегопады, которые и обусловили раннее окончание сезона абляции, поэтому этот интервал можно сократить до периода с 28 июля по 2 августа. Дешифрирование космических снимков Landsat-7 от 25 июля позволило выявить положение фирновой границы на 30 ледниках. Для большинства малых ледников дешифрировать фирновую границу не удалось, поэтому для полноты информации о её положении также использовался метод Куровского, согласно которому высота фирновой границы соответствует средневзвешенной по площади высоте ледника [17, 18]. Средняя величина разности между высотой фирновой границы, полученной по снимку, и высотой, полученной методом Куровского, составила +2 м, максимальное отличие не превысило 100 м. При дальнейшем статистическом анализе на основе данных Каталога мы использовали данные, полученные методом Куровского.

Для характеристики оледенения использовалось понятие об интенсивности оледенения R, которая представляет собой отношение площади ледников на участке F к длине основного гребня L, лежащего в пределах участка. Впервые оно было введено Е.В. Максимовым [19]. При этом использовался методический подход Г.Е. Глазырина [18], согласно которому L определяется от первого ледника на боковом гребне до его соединения с основным, а далее — по основному гребню и по следующему боковому гребню до последнего ледника. Учитывалась и такая характеристика условий существования ледников, как положительная разность оледенения, т.е. разность отметок горных вершин и снеговой линии [20].

Результаты

Согласно нашим данным, современное оледенение Шапшальского хребта и прилегающих к нему горных сооружений представлено 123 ледниками суммарной площадью 14,07 км² (табл. 2). Преобладают малые ледники, самый крупный ледник (№ 33) имеет площадь всего 0,96 км². Количество ледников с площадью менее 0,1 км² до-

стигает 70% (табл. 3), т.е. они не были бы включены, например, в Каталог ледников СССР, где учитывались ледники размером более 0,1 км². Отметим, что суммарная площадь данных ледников равна 3,56 км², что составляет четверть всей площади ледников исследуемой территории. По суммарной площади доминируют ледники с площадями в диапазоне 0,1—0,5 км². Нижний предел распространения ледников меняется от 2475 м на крайнем северо-западе до 3468 м на крайнем юго-востоке.

Два основных очага оледенения рассматриваемой территории – восточный склон Скалистого хребта и северо-восточный склон южной части Шапшальского хребта в верховьях р. Чон-Хем (табл. 4, рис. 2). В первом случае это связано с большой высотой горных сооружений, наивысшие отметки которых приближаются к 3500 м. Кроме того, Скалистый хребет выдвинут к северу (51° с.ш.) и не экранирован другими горными хребтами с северной стороны, попадая в зону более активного воздействия циклонов. Улучшение условий питания ледников здесь диктуется сниженным положением границы питания ледников (средневзвешенная высота 2980 м). Отрезок Шапшальского хребта в верховьях р. Чон-Хем находится примерно в 40 км южнее, высота гор здесь на 50-100 м меньше, однако именно здесь оледенение наиболее интенсивно, а ледники имеют максимальную среднюю площадь $(0,24 \text{ км}^2)$. Это связано, вероятно, с открытостью хребта с запада, со стороны Джулукульской котловины; причём хребет здесь располагается перпендикулярно западным и юго-западным влагонесущим потокам. Определённую роль играет и наличие в непосредственной близости крупных озёр – Джулукуль и Хиндиктиг-Холь, которые служат местными источниками влаги. Кроме того, из-за несколько иной ориентировки водораздела ледники здесь занимают более выгодное положение, оказываясь на затенённых участках склона.

Наличие двух упомянутых здесь очагов оледенения, находящихся примерно на одной долготе, но разнесённых примерно на $0,3^{\circ}$ по долготе, довольно чётко видно на рис. 3, a. К западу и востоку от указанных участков размеры ледников и интенсивность оледенения убывают до предельно низких значений (см. рис. 3, 6, см. табл. 4). В первом случае это связано с уменьшением высоты орографической базы оледенения, во втором, в

 $\it Taблица$ 2. Каталог ледников по состоянию на 2015 г.*

Z ⁰	Z	Название реки, вытекающей из ледника	Морфологический тип	Экспо- зиция ледника	Дли- на, км	Площадь, км ²	нижней точки кон- ца ледника	верхней точки ледника	Высота, м фирновой линии (средняя, метод Куровского)	фирновой линии (средняя, по кос- мическому снимку)	Уклон, граду- сы
1	2	3	4	5	9	7	8	6	0	11	12
			Бассейн р. Чуль-Чо	и (реки Ал	aw, Xe	Ч уль-Ча (реки Алаш, Хемчик), восточный склон Шапшальского хребта	лон Шапшаль	ского хре(oma		
_	1	D V.	na n	CB	0,45	$0,11\pm 0,003$	2480	2820	7992	2580	42
7	7	гуч. узкии	Каровыи	C3	0,70	$0,09\pm0,003$	2530	2920	2670	2635	31
1	æ			ပ	0,16	$0,02\pm0,001$	2940	3010	3000		17
1	4	Приток р. Казер		CB	0,25	$0,02\pm0,001$	2950	3000	2970		17
1	S		Склоновый	CB	0,12	$0,04\pm 0,001$	2840	2930	2890		26
ı	9	Пата		В	0,19	$0,03\pm0,001$	2890	2980	2930		22
ı	7	Прямая		CB	0,18	$0,04\pm 0,001$	3060	3130	3100		21
ı	∞		Карово-висячий	၁	0,08	$0,01\pm 0,001$	2880	2960	2900		26
3	6	Коментов	Voncenti	В	0,44	$0,06\pm0,002$	2780	3010	2880		29
4	10	Гаменная	Маровыи	В	1,04	$0,40\pm0,006$	2720	3130	2830	2810	23
1	11		Висячий	C3	0,31	$0,01\pm 0,001$	2830	2970	2910		27
S	12	Делине Л	2	CB	0,16	$0,01\pm 0,001$	2840	2970	2950		39
S	13	приток р. маменная	Бисячии	ပ	0,45	$0,08\pm0,002$	2800	3130	2970		36
9	14		Каровый	В	0,64	$0,17\pm0,003$	2920	3210	3080	3050	25
ı	15		Карово-висячий	CB	0,34	$0,04\pm 0,001$	2930	3030	2980		25
ı	16	Tourse	Висячий	CB	0,25	$0,01\pm 0,001$	2980	3120	3060		35
7	17	гаштухоль	Присклоновый	C	0,19	$0,01\pm0,001$	2820	2890	2860		26
8	18		Карово-висячий	С	0,51	$0,17\pm0,004$	2880	3210	3010		29
1	19		Висячий	С	0,51	$0,05\pm0,003$	2860	3250	3140		34
1	20	Приток р. Таштухоль	Висячий	С	0,20	$0,01\pm0,001$	2910	3040		3020	20
		Всего 20 ледников				$1,38{\pm}0,039$					
		Бассей	Бассейн р. Улуг-Оруг (р. Хемчин	с), западн	ый склс	Хемчик), западный склон хр. Скалистый (восточный склон Шапшальского хребта)	сточный скло	н Шапша	льского хребта)		
	21		Висячий	ပ —	0,30	$0,02\pm 0,001$	2860	3080	2960		37
6	22		Каровый	CB	0,44	$0,12\pm0,003$	2830	3080	2910		27
1	23	Vmm Onum	Висапий	C	0,20	$0,01\pm0,001$	3080	3190	3150		30
10	24	191-Opyr	DROA TRIKI	C3	0,53	$0,15\pm0,004$	2910	3360	3140		36
11	25		Киттопа опосол	C3	0,38	$0,03\pm0,002$	3050	3320	3190		35
12	26		марово-висячии	C	0,83	0.18 ± 0.004	2730	3300	3070	3055	34
Т	27	питог и Упит-Опит	Склоновый	ပ	0,26	$0,02\pm0,001$	3100	3190	3150		18
ī	28	Thurson by a star of par		CB	0,35	$0,03\pm0,002$	3030	3130	3090		19
		Всего 8 ледников				0.56 ± 0.018					

9 Hotrox p. Tonryan. Kaponani B G.24 o.09±0.003 25.90 3010 3.1 Tonryan. Kaponani B G.34 o.09±0.002 2380 3100 3020 3010 3.2 Tonryan. Kaponani CB G.37 o.09±0.002 2380 3100 3020 2380 3.4 Tonryan. Kaponani CB G.37 o.09±0.002 2380 3100 3020 2380 3.5 Tonryan. Kaponani CB G.32 o.09±0.002 2380 3120 3390 2390 2340 3.5 Tonryan. CCanonani CB G.32 o.09±0.003 3320 3390 3390 3220 3390 3.6 Tonryan. CCanonani CB G.32 o.05±0.001 3320 3390 3320 3320 4.6 Tonryan. CCanonani CB G.32 o.05±0.003 3170 3320 3220 4.6 Tonryan. CCanonani B G.32 o.05±0.003 3320 3320 3320 4.6 Tonryan. CCanonani B G.32 o.05±0.003 3320 3320 3320 4.6 <td< th=""><th>-</th><th>Бассейн</th><th>Бассейн р. Чиндозыл (р. Хемчик), восточный склон хр. Скалистый (восточный склон Шапшальского хребта).</th><th>, восточ</th><th>ный склс</th><th>эн хр. Скалистый (в</th><th>эсточный ск.</th><th>лон Шапшал</th><th>ьского хребта).</th><th>4</th><th>-</th></td<>	-	Бассейн	Бассейн р. Чиндозыл (р. Хемчик), восточный склон хр. Скалистый (восточный склон Шапшальского хребта).	, восточ	ный склс	эн хр. Скалистый (в	эсточный ск.	лон Шапшал	ьского хребта).	4	-	
Diatrox p. Tonryan Bircavini Col B 0.18 0	13 29		Каровый	В	0,45	$0,09\pm0,003$	2950	3160	3020	3010	26	
11 Printore P. Portyza, Kaponearia B 0.48 0.009±0.002 2930 3110 3000 2840 2840 3110 3120	- 30	Приток в Топпати	Висячий	ЮB	0,17	$0,02\pm0,001$	3160	3270	3220		34	
3.2 Touryman CER 0.57 0.17±0,000 3.89 3.950 2950 3.4 Touryman Ceronomania (Caronomania (Caronoma		TIPMION P. TOHLYJIB	Vocana	В	0,48	$0,09\pm0,002$	2930	3110	3000		56	
Touryana Kaponanii CB 174 0.94ct.0.006 3270 3380			Каровыи	CB	0,57	$0,17\pm0,003$	2880	3160	3050	2950	27	
1	\vdash	Тонгуль	Карово-долинный	CB	1,74	0,96±0,016	2630	3270	2900	2840	23	
Thereoff Participates Binestruiti CB 0.14 0.00±10.001 3320	- 34		Склоновый	ပ	0,29	$0,04\pm0,002$	3230	3330	3300		15	
The Theore P. Norman Centeneniari CB 0.15 0.05±0.001 3350 3330		приток р. тонгуль	Висячий	C	0,47	0.06 ± 0.002	3010	3320	3200	3220	33	
197 Thorrox P. Xonaun Cicuotousidi B 0.25 0.05±0.001 3770 3350 3320 3220	- 36		Висячий	CB	0,16	0.03 ± 0.001	3250	3390	3330		33	
3.8 3.8	+	Приток р. Холаш	Склоновый	В	0,25	0.05 ± 0.001	3270	3400	3350		30	
3	-		Каровый	В	0,59	$0,15\pm0,003$	3120	3400	3240	3220	27	
Acordania	- 39			В	0,22	$0,02\pm0,001$	3170	3320	3240		32	
44 According to the process of t		V	Склоновый	В	0,36	$0,19\pm0,004$	3140	3480	3310	3320	30	
Handbook High Procession	- 41	АОЛАШ		CB	0,29	$0,04\pm0,002$	3090	3170	3130		14	
Handright Hand	- 42		Висячий	C	0,22	$0,01\pm0,001$	2980	3100	3060		27	
44 Hottore p. Kotttauiii C. Raponeariti C. B 1,20 0,28±0,005 3340 3370 3000 3000 3000 44 44 44				В	0,38	0,09±0,003	2880	3160	2990	2995	27	
45 The Truck P. Kolthami-Cy Kapobe-Brieshynin CB 0,00 0,41±0,002 3940 3120 3020 3020 44 44 44 44 44 44 44			Каровый	В	1,20	$0,28\pm0,005$	2830	3370	3000	3000	24	
46/80 Πρиток р. Колташ-Cy Карово-висячий CB 0,00 0,41±0,009 2750 3340 3020 48/80 Насекта повернования в восячий в в восячий в восячий в восячий в восячий в восячий в восячий в вося в восячий в восячити в в	_			В	0,32	$0,07\pm0,002$	3040	3200	3120		76	
47 Horane Learning Reported Reported Learning CB Recording CB Record		Приток р. Колташ-Су	Карово-висячий	CB	0,00	0,41±0,009	2750	3340	3020		30	
48 Homework in the composition of the component of				CB	0,29	$0,05\pm0,004$	2940	3210	3050		40	
49 Holiothoral Signature (Aminical Mathical			Висячий	CB	0,30	$0,02\pm0,002$	2980	3260	3150		40	
50 Holithian Reporting States Frapority (All December) (All December				CB	1,01	$0,10\pm0,003$	2920	3260	3090		39	
51 Κομταιιι- Cy Ckiohobbili CB 0,47 0,06±0,003 2770 3070 2880 53 Колташ- Cy Ckiohobbili B 0,27 0,05±0,002 2840 3060 2940 55 Вискиний C 0,16 0,04±0,002 2820 3930 2980 55 Приток р. Чиндозьл Каровый C 0,26 0,03±0,001 3790 2980 3095 56 Приток р. Чиндозьл Kapobsiń C 0,26 0,03±0,001 2790 2920 3095 57 Приток р. Дыли- Ою C 0,27 0,03±0,001 2790 290 2820 58 Приток р. Шаглай Bисячий C 0,27 0,04±0,002 2890 3110 3050 58 Приток р. Шаглай Bисячий C 0,34 0,11±0,002 2890 3160 2980 3100 60 Приток р. Шаглай Bисячий C3 0,45 0,03±0,002 2890 3100			2000/1	ЮВ	0,11	$0,23\pm0,004$	2960	3200	3030		20	
52 Колташ-Су Склоновый В 0,27 0,05±0,002 2840 3060 2940 29 53 Висячий С 0,16 0,04±0,002 2850 2930 2930 29 55 Висячий С 0,51 0,05±0,002 2820 3080 3095 56 Приток р. Чиндозыл Каровый С 0,25 0,03±0,001 2790 2820 3080 3095 5 Приток р. Эрдит-Олок Каровый С 0,27 0,03±0,001 2790 2820 3090 3095 5 Приток р. Шаттай Висячий С 0,31 0,04±0,002 2890 3110 3030 10 5 Приток р. Шаттай Висячий С 0,31 0,01±0,002 2890 3140 2790 3010 3030 60 Приток р. Шаттай Висячий С 0,31 0,01±0,002 2890 3140 2790 3180 62 Приток р. Шаттай Каро			Каровый	CB	0,47	$0,06\pm0,003$	2770	3070	2880		28	
53 РОЛІАШІ—СУ СКЛОНОВВИЯ С 0,16 0,04±0,002 2850 2930 2930 54 Висячий С 0,51 0,03±0,001 3000 2980 2930 55 Всего 28 лединков Каровый С 0,26 0,03±0,001 3000 3080 3095 56 Приток р. Чиндозыл Каровый С 0,26 0,03±0,001 2790 2900 2820 3095 58 Приток р. Эрдин-Оюк Склоновый С 0,31 0,04±0,002 3010 3020 3020 58 Приток р. Шатлай Висячий С 0,31 0,01±0,002 2890 3110 3030 2790 60 Приток р. Шатлай Висячий С 0,31 0,01±0,002 2890 3160 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 2980 <td< td=""><td>- 52</td><td>Vormous C.</td><td>2000</td><td>В</td><td>0,27</td><td>$0,05\pm0,002$</td><td>2840</td><td>3060</td><td>2940</td><td></td><td>32</td></td<>	- 52	Vormous C.	2000	В	0,27	$0,05\pm0,002$	2840	3060	2940		32	
54 Приток р. Чиндозыт Каровый С 0,51 0,05±0,002 2820 3000 2980 3095 55 Приток р. Чиндозыт Каровый С 0,26 0,03±0,001 3000 3190 3080 3095 56 Приток р. Эдин-Окок Склоновый 3 0,27 0,03±0,001 2790 2820 3095 58 Приток р. Эдин-Окок Склоновый 3 0,39 0,04±0,002 3010 3020 3020 58 Приток р. Шагпай Висячий С 0,31 0,04±0,002 3010 3030 3020 60 Приток р. Шагпай Висячий С 0,31 0,01±0,002 2890 3040 2790 2800 61 Приток р. Шагпай Висячий СВ 0,34 0,11±0,004 2800 3040 2800 3010 62 Приток р. Шагпай Висячий СВ 0,34 0,11±0,004 2820 3040 2800 3180 3010 63	- 53	NOITIAIII-Cy	CKIOHOBBIA	ပ	0,16	$0,04\pm0,002$	2850	2980	2930		36	
55 Πρиток р. Чиндозыл Kapobshit C 0,04 0,03±0,001 3090 3080 3095 3095 Secto 28 ледников Kapobshit CB 0,27 0,03±0,001 2790 2820 3095 3095 56 Приток р. Шатлай Raposhit Samahaki Xemuk, samahaki	- 54		Висячий	ပ	0,51	$0,05\pm0,002$	2820	3000	2980		36	
56 Приток р. Чиндозыл Каровый CB 0,27 0,03±0,001 2990 2820 2820 Весто 28 ледников Вассейи р. Жемчик; западный склон хр. Скалиствый 57 Приток р. Эрлит-Окок Склоновый 3 0,34 0,04±0,002 3010 3050 3020 20 58 Приток р. Шатпай Висячий C 0,31 0,01±0,002 2890 3110 3030 200 50 Приток р. Шатпай Bисячий C 0,31 0,01±0,002 2890 3040 2790 2860			Каровый	ပ	0,26	$0,03\pm0,001$	3000	3190	3080	3095	56	
Весто 28 ледников З43±0,086 3,43±0,086 3,43±0,086 3,43±0,086 За датафный склон хр. Скапиствый Бассейи р. Женчик, западный склон хр. Скапиствый Вассейи р. Женчик, западный склон хр. Скапиствый 3 0,39 0,04±0,002 3010 3020 <th colspan<="" td=""><td>99 –</td><td>Приток р. Чиндозыл</td><td>Каровый</td><td>CB</td><td>0,27</td><td>$0,03\pm0,001$</td><td>2790</td><td>2900</td><td>2820</td><td></td><td>21</td></th>	<td>99 –</td> <td>Приток р. Чиндозыл</td> <td>Каровый</td> <td>CB</td> <td>0,27</td> <td>$0,03\pm0,001$</td> <td>2790</td> <td>2900</td> <td>2820</td> <td></td> <td>21</td>	99 –	Приток р. Чиндозыл	Каровый	CB	0,27	$0,03\pm0,001$	2790	2900	2820		21
57 Приток р. Эрдиг-Оюк Склоновый 3 0,04±0,002 3010 3050 3020 58 Приток р. Шаттай Висячий C 0,31 0,01±0,002 2890 3110 3030 60 Приток р. Шаттай Висячий C 0,31 0,01±0,002 2890 3110 3030 61 Приток р. Шаттай Висячий CB 0,34 0,11±0,004 2660 3050 2860 63 Каровый CB 0,34 0,11±0,004 2660 3050 3010 64 Приток Каровый CB 0,45 0,07±0,003 2930 3360 3380 65 Р. Малый Хемчик Карово-висячий CB 0,45 0,07±0,001 2950 3090 2970 66 Р. Малый Хемчик Карово-висячий B 0,15 0,01±0,002 2830 3090 2970	1	Зсего 28 ледников				$3,43\pm0,086$						
57 Приток р. Эрлиг-Оюк Склоновый 3 0,04±0,002 3010 3050 3020 58 Приток р. Шагпай Висячий C 0,31 0,01±0,002 2890 3110 3030 60 Присклоновый B 0,05 0,05±0,003 2680 3040 2790 2790 61 Приток р. Шагпай Bисячий CB 0,45 0,03±0,002 2790 3160 3010 2800 63 Каровый CB 0,95 0,07±0,003 2930 3360 3180 2980 64 Приток Bисячий CB 0,95 0,02±0,009 2820 3240 2980 2980 65 р. Малый Хемчик Карово-висячий CB 0,40 0,07±0,002 2830 3090 2970 65 р. Малый Хемчик Карово-висячий B 0,15 0,01±0,001 3050 3140 3090 2970			Бас	ссейн р.	Хемчик,	западный склон хр. (Скалистый					
58 Приток р. Шаттай Висячий С 0,31 0,01±0,002 2890 3110 3030 В 59 Присклоновый B 0,05 0,05±0,003 2680 3040 2790 D 60 Приток р. Шаттай Bисячий C3 0,45 0,03±0,002 2790 3160 3010 D 63 Каровый C3 0,56 0,07±0,003 2930 3360 3180 D 64 Приток Висячий C 0,21 0,02±0,001 2920 3240 2980 D 65 Р. Малый Хемчик Карово-висячий C 0,21 0,02±0,001 2950 3090 2970 D 65 Р. Малый Хемчик Карово-висячий B 0,40 0,01±0,001 3050 3140 3090 2970 65 О,21 0,02±0,001 3050 3140 3090 2970 D	- 57	Приток р. Эрдиг-Оюк	Склоновый	3	0,39	$0,04\pm 0,002$	3010	3050	3020		6	
59 Присклоновый B 0,05 0,05±0,003 2680 3040 2790 B 60 60 Приток р. Шаглай Bисячий CB 0,34 0,11±0,004 2660 3050 2860 9 62 СЗ 0,45 0,03±0,002 2790 3160 3010 9 63 Каровый CB 0,95 0,07±0,003 2820 3240 2980 9 64 Приток Висячий C 0,21 0,02±0,001 2950 3080 3030 9 65 Р. Малый Хемчик Карово-висячий B 0,40 0,07±0,002 2830 3090 2970 9 66 Р. Малый Хемчик Карово-висячий B 0,15 0,01±0,001 3050 3140 3090 9	- 58	Приток р. Шагпай	Висячий	C	0,31	0.01 ± 0.002	2890	3110	3030		32	
60 Приток р. Шагпай Висячий CB 0,34 0,11±0,004 2660 3050 2860 62 Висячий C3 0,45 0,03±0,002 2790 3160 3010 63 Каровый C3 0,56 0,07±0,003 2930 3360 3180 64 Приток Висячий C 0,21 0,02±0,001 2950 3080 3030 65 Р. Малый Хемчик Карово-висячий B 0,40 0,07±0,001 2950 3090 2970 66 Р. Малый Хемчик Карово-висячий B 0,15 0,01±0,001 3050 3140 3090 8 0,15 0,01±0,001 3050 3140 3090 909			Присклоновый	В	0,02	0.05 ± 0.003	2680	3040	2790		36	
61 Приток р. Шаглай Висячий C3 0,45 0,03±0,002 2790 3160 3010 62 Каровый C3 0,56 0,07±0,003 2930 3360 3180 64 Каровый CB 0,95 0,32±0,009 2820 3240 2980 65 Висячий C 0,21 0,02±0,001 2950 3080 3030 65 Р. Малый Хемчик Карово-висячий B 0,15 0,01±0,001 3050 3140 3090 Всего 9 ледников В 0,15 0,01±0,001 3050 3140 3090				CB	0,34	$0,11\pm0,004$	2660	3050	2860		47	
62 Васьто 9 ледников СВ 0,56 0,07±0,003 2930 3360 3180 63 Каровый CB 0,95 0,03±0,009 2820 3240 2980 64 Приток Bисячий C 0,21 0,02±0,001 2950 3080 3030 65 р. Малый Хемчик Карово-висячий B 0,40 0,07±0,001 2830 3090 2970 66 О,01±0,001 3050 3140 3090 2970 10,00	- 61	Приток р. Шагпай	Висячий	ဌ	0,45	0.03 ± 0.002	2790	3160	3010		37	
63 Каровый CB 0,95 0,32±0,009 2820 3240 2980 64 Приток Bисячий C 0,21 0,02±0,001 2950 3080 3030 65 р. Малый Хемчик Kapobo-висячий B 0,40 0,07±0,001 2830 3090 2970 8 0,15 0,01±0,001 3050 3140 3090 5 В фыников 0,69±0,025 0,69±0,025 3140 3090 3090				ප	0,56	$0,07\pm0,003$	2930	3360	3180		37	
64 Приток Висячий С 0,21 0,02±0,001 2950 3080 3030 65 р. Малый Хемчик Карово-висячий B 0,40 0,07±0,002 2830 3090 2970 8 0,15 0,01±0,001 3050 3140 3090 3090	_		Каровый	CB	0,95	$0,32\pm0,009$	2820	3240	2980		25	
65 р. Малый Хемчик Карово-висячий CB 0,40 0,01±0,002 2830 3090 2970 66 Весто 9 ледников Карово-висячий В 0,15 0,01±0,001 3050 3140 3090	-	Пыты	Висаний	ပ	0,21	$0,02\pm0,001$	2950	3080	3030		27	
66 Р. В вето 9 ледников Карово-висячий В 0,15 0,01±0,001 3050 3140 3090 Всего 9 ледников В вето 9 ледников	_	приток в Матый Хемчик	Бисалии	CB	0,40	$0,07\pm0,002$	2830	3090	2970		37	
			Карово-висячий	В	0,15	$0,01\pm0,001$	3050	3140	3090		25	
	. =	Всего 9 ледников				$0,69\pm0,025$						

1 2	3	4	2	9	7	8	6	10	11	12
		Бассейн	р. Хемч	ик, вост	Бассейн р. Хемчик, восточный склон Шапшальского хребта	альского хребі	na			
- 67		Каровый	CB	0,15	$0,01\pm 0,001$	2750	2830	2800		28
89 –	Приток р. Ары-Хем	Склоновый	CB	0,23	$0,02\pm0,001$	2860	2910	2890		18
69 –		Висячий	C	0,26	$0,01\pm 0,001$	2910	3060	3020		28
	Всего 3 ледника				0.04 ± 0.003					
		Бассейн р.		ем, восп	Чон-Хем, восточный склон Шапшальского хребта	альского хреб	ma			
39 70	Приток р. Куль-Хем	Склоновый		0,36	$0,09\pm0,002$	2750	2970	2830		28
44 71		27	CB	0,36	$0,05\pm0,002$	2970	3140	3060		25
46 72		Каровый	C	0,50	$0,09\pm0,002$	2860	3060	2950	2945	28
48 73	Приток р. Чон-Хем	7	CB	1,50	0.52 ± 0.007	2800	3470	2990	2955	20
49 74		карово-долинный	CB	1,70	0.57 ± 0.007	2820	3350	3050	3085	19
51 75		Карово-висячий	C	0,23	$0,03\pm0,002$	2930	3120	3080		32
52 76	How Vous	Victoria orogan	CB	1,02	$0,28\pm0,004$	2920	3210	3080	3080	17
53 77	JOH-ACM	марово-долинный	CB	0,93	$0,29\pm0,004$	2900	3220	3020	3030	19
54 78			CB	1,60	$0,90\pm0,012$	2830**	3360	3040**	3085	21
54 79		, and a second	C	0,37	$0,06\pm0,002$	3010	3160	3090	3080	24
55 80	Приток р. Чон-Хем	Маровыи	CB	0,40	$0,06\pm 0,002$	3000	3190	3080		25
58 81			С	0,82	$0,22\pm0,005$	2900	3290	3100	3110	24
59 82		Висячий	C	0,19	$0,01\pm0,001$	3070	3190	3150		31
	Всего 13 ледников				3,17±0,052					
	Бассейн 1	Бассейн р. Чинге-Хем (р. Хемчик), северный склон массив Мозур-Тайга (восточный склон Шапшальского хребта	северны	й склон л	нассив Мозур-Тайга	(восточный с	жлон Шапи	альского хребта)		
60 83	Чинге-Хем	Каровый	C	0,77	$0,27\pm0,008$	3200	3280	3090	3135	30
61 84		Decomen	С	0,94	$0,37\pm0,010$	2840	3570	3200		36
62 85	Harmon & Hirms Vois	БИСЯЧИИ	C3	0,73	$0,12\pm0,003$	3040	3550	3350		36
98 –	приток р. чинге-лем	Склоновый	C3	0,13	$0,02\pm0,001$	3420	3520	3470		29
- 87		Висячий	C	0,18	$0,01\pm0,001$	3190	3310	3270		30
	Всего 4 ледника				$0,79\pm0,023$					
	Бассейн р. Шу	Бассейн р. Шуй (реки Барлык, Хемчик), северо-восточный склон Шапшальского хребта и северный склон хр. Цаган-Шибэту	eeebo-e	осточны	й склон Шапшальск	гого хребта и	северный ск	лон хр. Цаган-Ши	ушедп	
88	A rece Marine Vari	Висячий	В	0,22	$0,02\pm0,002$	3300	3330	3300		18
63 89	Алды-мешту-лем	Карово-висячий	В	0,63	$0,20\pm0,004$	3080	3380	3220		22
64 90	Паумен В	Voncouri	CB	1,28	$0,29\pm0,005$	2980	3260	3120	3160	16
65 91	LIPRION P. OHLJIY-OION	Маровый	CB	0,67	$0,13\pm0,003$	3070	3210	3150	3145	18
67 92	Thursday Av Oron	Карово-висячий	ЮВ	0,29	$0,05\pm0,002$	3230	3370	3340		23
68 93	HIPHIUN P. AN-UIUN	Ассиметрично-каровый	CB	0,47	$0,07\pm0,003$	3010	3310	3170		27
69 94		Висячий	CB	0,35	$0,04\pm0,002$	3110	3270	3230		25
70 95	Ак-Оюк	Склоновый	CB	0,14	$0,02\pm0,001$	3100	3170	3140		23
71 96		Каровый	С	0,26	$0,06\pm0,002$	3010	3140	3070		26

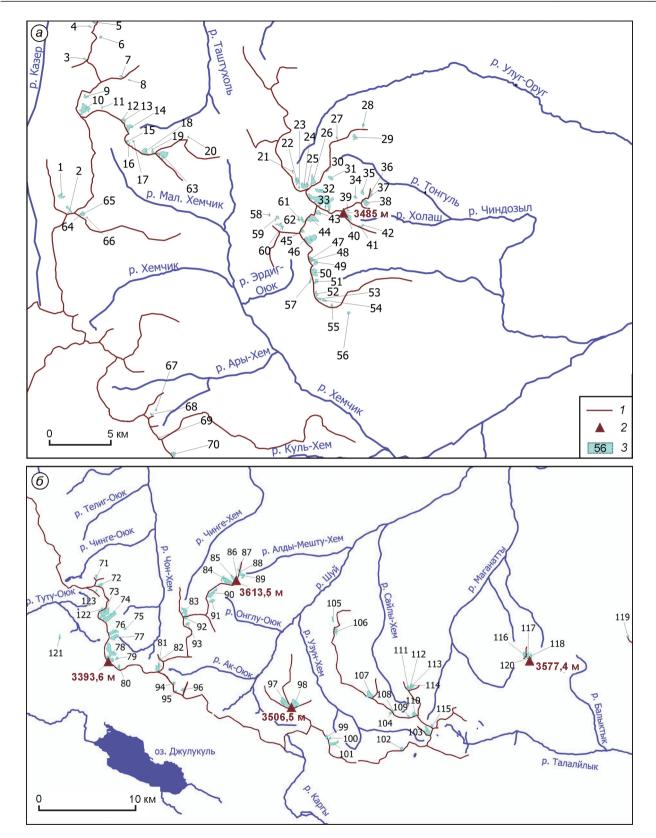
75 97	Приток р. Шуй	Каровый	C	1,25	$0,44\pm0,009$	3020	3440	3190		22
86 92		Склоновый	CB	0,85	0,47±0,006	3030	3490	3220	3220	22
66 82		Каровый	С	0,49	$0,06\pm0,003$	3090	3330	3180		27
79 100		Висячий	С	0,45	$0,05\pm0,002$	3070	3360	3260		32
80 101	Приток р. Узун-Хем	Каровый	CB	1,07	$0,22\pm0,006$	2990	3270	3140	3210	23
85 102		Карово-висячий	ပ	0,40	0,07±0,002	3160	3430	3340		32
86 103		Каровый	ပ	1,04	$0,30\pm0,004$	2980	3400	3170		26,0
87 104		Карово-висячий	C3	0,36	$0,05\pm0,002$	3270	3500	3390		32,2
88 105	Приток р. Шуй	Склоновый	C3	0,61	0,05±0,002	3170	3350	3260		18
90 106		Žiano A	В	0,37	0,13±0,003	3200	3400	3280		25
91 107	Приток р. Сайлы-Хем	Маровый	ပ	69,0	$0,34\pm0,004$	2990	3500	3290	3385	32
- 108		Висячий	C	0,23	$0,02\pm0,001$	3280	3480	3400		39
93 109	Vocamin	Каровый	C3	0,26	$0,03\pm0,001$	3080	3220	3160		27
94 110	Canjibi-Aem	Карово-висячий	ပ	0,48	0,12±0,003	3018	3390	3240		37
95 1111		Карово-висячий	C	0,48	0,08±0,003	3160	3430	3320		30
95 112			Э	0,43	$0,03\pm0,002$	3150	3400	3300		32
95 113		Vanimoura outona	C	0,61	0,07±0,002	3040	3400	3240		30
95 114	Thermore to Morottomere	N aрово-висячии	C3	0,37	0,04±0,002	3080	3310	3200		31
96 115	приток р. маганатгы		ပ	0,36	0,05±0,002	3090	3360	3260	3290	34
99 116		Каровый	C	0,50	$0,11\pm0,002$	3060	3440	3250		36
100 117		J	ပ	0,53	0.08 ± 0.002	3050	3500	3330		42
- 118		Бисячии	ပ	0,54	0,06±0,002	3040	3530	3260		46
	Всего 31 ледник				$3,75\pm0,088$					
		Bac o	сейн р. Б	арлык, С	Бассейн р. Барлык, Северный склон Цаган-Шибэту	-Шибэту				
101 119 L	101 119 Приток р. Большой Ак-Хем	Карово-висячий	CB	0,24	$0,04\pm0,002$	3230	3340	3320		24
102 120	Приток р. Балыктык	Плоский	1	0,26	$0,09\pm0,002$	3470	3560	3530		21
	Всего 2 ледника				$0,13\pm0,004$					
		Бассейн	e. Tymy-C	Эюк, зап	Бассейн р. Туту-Оюк, западный склон Шапшальского хребта	льского хре <i>б</i>	ma			
- 121		Склоновый	В	0,15	$0,04\pm0,002$	3150	3200	3180		17
- 122	Туту-Оюк	Каровітй	CB	0,22	$0,03\pm0,001$	2970	3090	3020	3025	26
- 123		маровый	CB	0,17	$0,02\pm0,001$	2840	2960	3020		29
	Всего 3 ледника				$0,09\pm0,004$					
ИТС	итого 123 ледника			0	ОБШАЯ ПЛОЩАДЬ 14,07±0,334 км²					

ЦМР получена высота нижней точки ледника 2855 м, по результатам GPS-привязки при посещения ледника 21.07.2016 г. высота была угочнена (2830 м), приведено последнее значение. Высота фирновой линии и нижней точки ледника № 78 даны на основе наземных наблюдений и GPS-маркирования 21.07.2016 г, высота фирновой линии, полученной по методу Куровского, для ледника № 78 совпала с результатами наземных наблюдений и GPS-маркирования. *N0 — номер ледника по Каталогу ледников СССР [2]; N — номер по Каталогу 2015 г. Для ледника № 78 по результатам дешифрирования снимков и использования

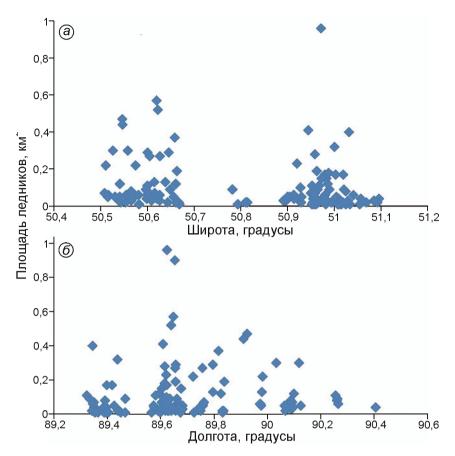
Таблица 3. Распределение ледников по площадным диапазонам.

Площадь, км ²	Число ледников	% от общего числа	Суммарная площадь, км ²	% от общей площади
Менее 0,1	86	69,9	3,56	25,3
0,1-0,5	33	26,8	7,56	53,7
0,5-1	4	3,3	2,95	21,0

Таблица 4. Распределение ледников по участкам горных хребтов и речным бассейнам


Горный хребет	Бассейн	Экспозиция склона хребта	Число ледников	Площадь оледенения, км ²	Положитель- ная разность оледенения, м	Интенсивность оледенения R^* , KM^{-1}
	Притоки р. Чуль-Ча (Казер, Таштухоль).	В	20	1,38±0,039	329	0,05
	Р. Чон-Хем	СВ	13	3,17±0,052	429	0,12
Шапшальский	Правобережные притоки р. Шуй (Узун-Хем и др.)	С	9	1,71±0,036	384	0,07
	Р. Шагпай	ЮВ	1	$0,32\pm0,009$	263	_
	Малый Хемчик	CB	3	$0,1\pm0,004$	223	0,01
	Приток р. Ары-Хем	В	3	$0,04\pm0,003$	170	0,01
	Р. Туту-Оюк	C3	3	$0,09\pm0,004$	232	0,01
	Р. Улуг-Оруг	С	8	0,56±0,018	272	0,08
Скалистый	Р. Чиндозыл	В	28	3,43±0,086	460	0,09
	Р. Эрдиг-Оюк	3	1	$0,04\pm0,002$	260	_
	Р. Шагпай	C3	5	$0,27\pm0,014$	490	0,04
Мозур-Тайга	Р. Чинге-Хем	СЗ	5	$0,79\pm0,023$	282	0,08
(отрог Шапшальского хребта)	Левобережные притоки р. Шуй (Алды-Мешту-Хем)	В	9	0,88±0,026	308	0,06
	Р. Сайлы-Хем	СВ	5	0,64±0,013	302	0,04
Haray Hlykamy	Р. Маганатты	С	8	0,52±0,016	304	0,03
Цаган-Шибэту	Р. Барлык	СВ	1	$0,04\pm0,002$	35	-
	Р. Талалйлык	ЮВ	1	$0,09\pm0,002$	50	_

^{*}Для участков, представленных одним ледником, интенсивность оледенения не вычислялась.


первую очередь, с уменьшением количества выпадающих осадков, вызванным не только орографической тенью Шапшальского хребта, но и невыгодной для перехвата влагонесущих потоков субширотной ориентировкой хр. Цаган-Шибэту.

Этот вывод хорошо иллюстрируется положением границы питания, а именно: при средневзвешенной по площади высоте границы питания 3110 м для всего ледникового центра, на западной периферии территории, в бассейне р. Чуль-Ча, она составляет 2860 м (средневзвешенное значение), а на крайнем востоке (бассейн р. Барлык) достигает средней высоты 3460 м (рис. 4). При этом в высоте фирновой границы долготный градиент проявляется в большей степени, чем широтный (491 м на 1° и 428 м на 1° соответственно), что отражает ключевую роль в ослаблении влияния западных влагонесущих потоков в направление с запада на восток и в ухудшении условий питания ледни-

ков в этом направлении. Вместе с тем довольно большие значения широтного градиента в положении границы питания нельзя объяснить исключительно термическими различиями: если исходить из высотного термического градиента $0.6~^{\circ}\text{C}/100~\text{м}$ в летнее время, то это означало бы разность средних летних температур примерно в 2,6 °C для точек, разнесённых по широте на 1°. Средние многолетние температуры летнего периода на ГМС Мугур-Аксы и Тээли составляют 12,9 и 17,1 °С соответственно. При разности высот между ГМС в 847 м, приведённая к высоте ГМС Мугур-Аксы средняя летняя температура на ГМС Тээли составит 12,0 °C. При широтном различии положения примерно в 0°38' это означает широтный термический градиент всего лишь 1,4 °C на 1° широты. Очевидно, что на повышении фирновой границы в направлении с севера на юг влияет не только повышение температуры, но и сокращение количества осадков.

Рис. 2. Современные ледники Шапшальского центра оледенения: a — северо-западная часть; δ — юго-восточная часть; l — горные гребни; d — вершины; d — современные ледники и их номера **Fig. 2.** Modern glaciers of Shapshalsky glacial center: d — of the northwestern part; d — of the southeastern part; d — mountain ridges; d — peaks; d — recent glaciers and their numbers

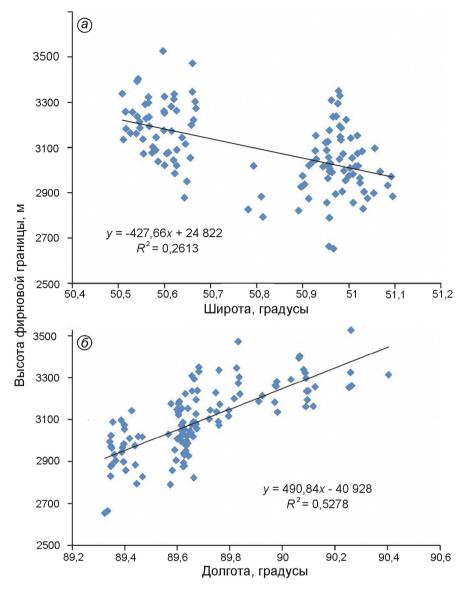

Рис. 3. Пространственное распределение площадей ледников, км 2 : a — по широте; δ — по долготе

Fig. 3. Spatial distribution of glacier areas, km²: a – latitude; δ – longitude

Интегральной характеристикой, отражающей возможность существования ледников, может служить положительная разность оледенения (см. табл. 4). При наибольших для изучаемого района значениях (свыше 400 м) ледники на северных и северо-восточных склонах достигают средней площади около 0,25 км², а площади крупнейших из них приближаются к 1 км2. В экспозиционном отношении в районе исследования количественно доминируют ледники северных и северо-восточных склонов (рис. 5). Ледники наибольших площадей приурочены к северо-восточным склонам, что объясняется их положением по отношению к влагонесущим юго-западным потокам воздуха — снег переметается с наветренных склонов на подветренные, где и создаются наилучшие условия для формирования ледников. Распределение ледников по морфологическим типам отражает преобладание малых ледников на фоне развитого альпийского рельефа. Преобладают каровые ледники (табл. 5), долинные ледники, напротив, отсутствуют, а за счёт сильного расчленения рельефа плосковершинные и склоновые ледники распространены незначительно.

Наше исследование Шапшальского центра оледенения — не первое. Так, на основе дешифрирования аэрофотоснимков 1955 г. Н.И. Михайлов обнаружил 27 ледников площадью 10,85 км² [8], а Е.Д. Донченко выделил 58 ледников суммарной площадью 19,8 км² [7]. Обе работы охватывают не всю территорию нашего исследования, к тому же с 1950-х годов ледники сильно изменились, что не позволяет сопоставить данные этих авторов с нашими. Наиболее детальное исследование оледенения было проведено при составлении Каталога ледников СССР [2], когда данные о ледниках получали на основе аэрофотоснимков 1955, 1959, 1964, 1965 гг.

По данным Каталога [2], в пределах Шап-шальского центра оледенения было 128 ледни-

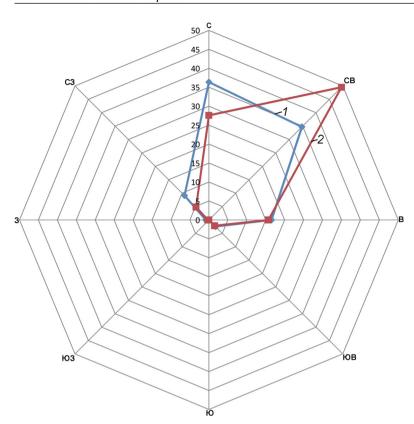

Рис. 4. Пространственное распределение высоты фирновой границы ледников, м: a — по широте; δ — по долготе

Fig. 4. Spatial distribution of the firn line altitude, m: a - latitude; $\delta - \text{longitude}$

ков суммарной площадью 30,3 км². При этом отмечено наличие 25 ледников площадью менее 0,1 км², которые были учтены в общей статистике по суммарному числу ледников и их суммарной площади. Однако такие ледники не были обозначены на схемах оледенения, им не присвоены номера, а в таблице Каталога по ним нет никаких данных, что не позволяет установить их локализацию. При дешифрировании мы обнаружили 32 ледника, отсутствующих в основной таблице Каталога [2]. Возможно, некоторые из них соответствуют упомянутым ранее 25 лед-

никам площадью менее 0,1 км², однако определить, так ли это — невозможно. Но даже если из 32-х обнаруженных нами ледников 25 уже выделяли при составлении Каталога [2], то остальные 12 обнаружены впервые. Например, ледники в бассейне р. Туту-Оюк, относящейся к бассейну р. Чулышман (в Каталоге [2] все ледники Шапшальского центра отнесены к бассейну р. Хемчик). Кроме того, девять ледников, включённых в Каталог [2], к 2015 г. исчезли.

Поскольку нами установлено наличие не менее 12 ледников, не учтённых в Каталоге [2],

Рис. 5. Экспозиционное распределения количества (% от суммарного) (I) и площади (% от суммарной) (2) ледников **Fig. 5.** Aspect distribution of numbers (% from the sum) (I) and areas (% from the sum) (2) of the glaciers

вероятно, реальная суммарная площадь ледников в 1950-60-е годы была больше 30,3 км². Поэтому, исходя из установленной нами на 2015-2016 гг. суммарной площади ледников 14,07 км², можно предположить чуть более чем двукратное сокращение площади оледенения, хотя по отмеченным здесь причинам трудно дать более точную оценку произошедших изменений. Непосредственно сопоставить полученные нами данные с данными Каталога [2] трудно не только из-за отсутствия в Каталоге [2] некоторых выделенных нами ледников, но и из-за разной точности измерений. В Каталоге [2] площади ледников даны с точностью до 0,1 км², что, с учётом преобладания ледников малой площади, является довольно грубым округлением. Так, если ледник имеет в Каталоге [2] площадь 0,2 км², то его неокруглённая площадь может составлять от 0,15 до 0,24 км², т.е. почти 50% от заявленной в Каталоге [2] цифры. Если мы в своём каталоге от 2015-2016 гг. устанавливаем для данного ледника площадь $0,15 \text{ км}^2$, то это может означать как то, что ледник сократился на 0.09 км^2 (т.е. на 38%), так и то, что ледник не сокращался совсем. Поэтому оценка изменения площадей конкретных ледников статистически

некорректна и лишь при сравнении суммарных площадей мы можем допустить, что погрешности, связанные с округлением, будут компенсировать друг друга ввиду своего несистематического характера.

Обсуждение

Сопоставление выявленного нами двукратного сокращения площади оледенения в период с 1955-1965 по 2015 г. с данными по соседним ледниковым центрам позволяет считать такую оценку реалистичной. Например, в работе [12] установлено, что в период с 1952 г. (данные Каталога [2]) по 2008 г. площадь ледниковой системы Катунского хребта сократилась на 26,1%. Меньшее, чем в случае Шапшальского центра, сокращение ледниковой системы можно объяснить преобладанием в Катунском хребте относительно крупных ледников, более устойчивых к климатическим изменениям. Этот вывод подтверждается взятым из той же работы анализом сокращения ледников разных размеров: ледники Катунского хребта, относящиеся к группе с площадью менее 0,5 км², сократились на 43,5%, т.е. почти вдвое. Более крупные ледники региона сократились в меньшей степени. Так, для 126 ледников Северо-Чуйского и Южно-Чуйского хребтов площадью более 0,5 км² сокращение за период с 1952 по 2004 г. составило 19,7±5,8% [11]. Отчётливая связь степени сокращения ледников с их средними размерами прослеживается в оценках изменения площади ледников Русского Алтая за период с 1952 по 2008 г. [21]. В районах с преобладанием относительно крупных ледников сокращение составило, %: Катунский хребет – 9,1; Южно-Чуйский хребет — 9,5; Северо-Чуйский хребет — 10,4; Южный Алтай – 11,5; массив Таван-Богдо-Oла — 11,9%. Напротив, в районах развития малых ледников сокращение было существеннее: для хребтов Сайлюгем и Чихачева -20.5%; для бассейна р. Бия -26.9%.

Оледенение северного склона массива Таван-Богдо-Ола с 1962 по 2015 г. сократилось на 24,3% [22], оледенение непосредственно примыкающего к Шапшальскому хребту массива Монгун-Тайга за период 1966—2011 гг. уменьшилось на 31% [23]. В обоих случаях ледники этих массивов существенно крупнее, чем ледники Шапшальского центра, что и объясняет их меньшее сокращение. Для территории Монгольского Алтая известны оценки отсутствия изменения площадей ледников массива Цамбагарав в период с 1963 по 2000 г., а для массивов Таван-Богдо-Ола, Турген и Хархира – в период с 1987 по 2000 г. [24]. Согласно другим данным, ледники массива Цамбагарав с 1968 по 2006 г. сократились на 14%, а с 1968 по 2015 г. – на 17% [25]; ледники массива Таван-Богдо-Ола потеряли 17,6% [26]. Для массива Таван-Богдо-Ола в работе [26] проведены расчёты сокращения оледенения различных речных бассейнов параллельно с расчётами интенсивности оледенения. Оледенение речных бассейнов на периферии массива, обладающего сейчас интенсивностью оледенения в пределах 0,07-0,12, что сопоставимо с интенсивностью оледенения Шапшальского центра, уменьшилось на 31-55%. Это близко к нашей оценке сокращения ледников Шапшальского центра.

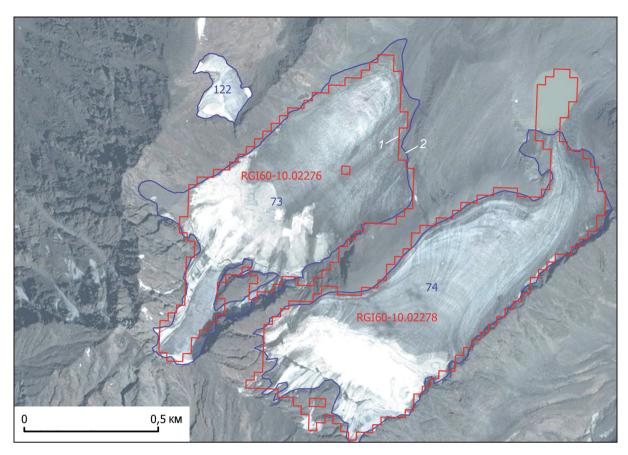

В последние годы в рамках проекта GLIMS и составления Глобального каталога ледников Randolph Glacier Inventory (RGI) была проведена каталогизация ледников северной Азии,

Таблица 5. Морфологические типы современных ледников

, 11			• • •
Морфологический	Число	% от общего	% от общей
тип	ледников	числа	площади
Карово-долинные	5	4,1	18,6
Каровые	40	32,5	45,9
Карово-висячие	19	15,4	11,5
Висячие	34	27,6	13,2
Склоновые	22	17,9	9,7
Присклоновые	2	1,6	0,4
Плосковершинные	1	0,8	0,6

в том числе и Шапшальского центра оледенения, вошедшего в RGI, начиная с пятой версии [10]. Согласно данным RGI, по состоянию на 2011 г. в пределах Шапшальского центра насчитывалось 98 ледников суммарной площадью 14,336 км². Эти данные хорошо согласуются с нашими данными по площади (14,07 км²), однако мы на этой территории выделили на 25 ледников больше. Это позволяет констатировать существенное несовпадение наших данных с результатами каталогизации в рамках RGI. Очевидно, что отличия вызваны разными методиками работы и разным исходным материалом. Авторы каталога в рамках RGI использовали полуавтоматический подход к дешифрированию, при котором первичным источником информации были снимки Landsat-5, -7 и -8 (разрешение 30 м), в некоторых случаях (например, участки сезонного снега) полученные первичные контуры подвергались ручной корректировке, иногда использовались доступные на отдельные участки снимки высокого разрешения (но это не относится к району нашего исследования). Очевидно, что при таком большом охвате территории и использовании снимков низкого разрешения дешифрирование малых ледников неизбежно связано с ошибками и неточностями, как-то: выделение крупных снежников в качестве ледников; неточности в определении края ледника при его бронировании моренным материалом, наличии снежного покрова и сильной затенённости. Использование снимков высокого разрешения и ручное дешифрирование в большинстве случаев позволяют решить эти проблемы, хотя и представляет собой довольно трудоёмкий процесс.

В качестве примера приведём фрагмент космического снимка QuickBird-2 от 18.07.2012 г.,

Рис. 6. Сопоставление результатов дешифрирования космических снимков согласно RGI-6 (*1*) и по нашим данным (*2*) на фоне фрагмента космического снимка QuickBird-2 от 18.07.2012 г.

Fig. 6. Comparison of the results of the interpretation of satellite images according to RGI-6 (1) and according to our data (2) against the background of a fragment of the QuickBird-2 satellite image from 18.07.2012

пространственное разрешение которого составляет 2,4 м (рис. 6). На снимок наложены контуры ледников согласно RGI-6 (красным) и нашему дешифрированию (синим). Хорошо видно, что в RGI-6 на данном участке содержатся существенные пробелы и неточности: не выделен ледник (№ 122) площадью 0.03 км^2 ; неправильно определён край ледника № 74 (RGI60-10.02278) - в качестве края ледника принято приледниковое озеро; не полностью учтены забронированные участки ледников № 73 (RGI60-10.02276) и № 74 (RGI60-10.02278). Поскольку погрешности в RGI носят противоположный знак, они во многом компенсируют друг друга при рассмотрении суммарных площадей, но при анализе индивидуальных ледников очевидно, что реальные отличия нашего Каталога и данных RGI существенно больше.

Есть основания полагать, что составленный нами Каталог ледников Шапшальского центра

оледенения точнее отражает современное состояние оледенения этого района. Выполненные расчёты интенсивности оледенения *R* позволяют охарактеризовать данный центр оледенения с точки зрения его развитости и пространственного размещения. Согласно В.Г. Ходакову [27], выделяют четыре типа оледенения: а) районы дисперсного оледенения; здесь ледники и снежники не составляют единого массива, а представляют собой лишь полосы и очаги сосредоточения; относительная и абсолютная площади ледников малы; б) районы среднего полудисперсного горного оледенения - ледники в них связаны в цепочку или гроздья, отходящие от компактных массивов, площадь их значительна; в) районы крупного полукомпактного горного оледенения, они отличаются от предыдущего типа почти полным отсутствием узких ледово-фирновых перешейков, мелких пятен и общей массивностью контура оледенения; г) районы компактного или покровного оледенения.

Г.Е. Глазырин [18] выделил значение R=0,8 в качестве рубежа между двумя первыми типами (а и б), поскольку при развитии оледенения, вплоть до значения 0,8, число ледников увеличивается, а далее их слияние преобладает над процессом появления новых ледников. Например, для массива Таван-Богдо-Ола значения R достигают величины 1,1 [26]. Таким образом, Шапшальский центр оледенения, где интенсивность оледенения не превышает 0,12, можно считать районом дисперсного оледенения, причём далёким от перехода к другому типу.

Выводы

- 1. По состоянию на 2015 г. в Шапшальском центре оледенения установлено 123 ледника суммарной площадью 14,07 км². Впервые в верховьях р. Чулышман обнаружены малые ледники. В структуре оледенения доминируют малые ледники площадь 70% ледников не превышает 0.1 км².
- 2. По сравнению с данными Каталога ледников СССР [2] с 1955—1965 гг. площадь ледников сократилась к настоящему времени более чем в 2 раза, что в превышает сокращение ледников в соседних центрах оледенения. Высокие

темпы сокращения связаны с преобладанием малых лелников.

- 3. В экспозиционном отношении здесь доминируют ледники северных и северо-восточных склонов, самые крупные ледники находятся на северо-восточных склонах. Приуроченность основных площадей ледников к подветренным склонам указывает на значительную роль в их питании метелевого переноса снега.
- 4. В морфологическом отношении доминируют каровые ледники, а долинные ледники отсутствуют. В настоящее время в Шапшальском центре доминирует дисперсное оледенение и большинство ледников близко к полному исчезновению.

Благодарности. Исследование проведено при поддержке Российского фонда фундаментальных исследований, проект № 19-05-00535 А «Природные катастрофы и трансформация ландшафтов юговосточного Алтая и северо-западной Монголии в период с максимума последнего оледенения».

Acknowledgments. The study was supported by the Russian Foundation for Basic Research, project N_2 19-05-00535 A «Natural catastrophes and transformation of the landscapes of the southeastern Altai and northwestern Mongolia in the period from the maximum of the last glaciations».

Литература

- 1. *Тронов М.В.* Очерки оледенения Алтая. М.: Географгиз, 1949. 373 с.
- 2. Каталог ледников СССР. Т. 16. Ангаро-Енисейский район. Вып. 1. Енисей. Ч. 4. Бассейн р. Кемчика. Л.: Гидрометеоиздат, 1973. 63 с.
- 3. *Скорняков В.А.* Сток на территории бассейна Верхнего Енисея // Изв. АН СССР. Сер. геогр. 1957. № 6. С. 15—23.
- 4. *Скорняков В.А.* Распределение средних многолетних модулей стока в бассейне верхнего Енисея // Метеорология и гидрология. 1957. № 8. С. 43—44.
- 5. Севастьянов В.В., Шантыкова Л.Н. Характеристика поля годовых сумм осадков в Горном Алтае по гляциоклиматическим показателям // Вестн. Томского гос. ун-та. 2001. Т. 274. С. 63–68.
- 6. *Сапожников В.В.* Монгольский Алтай в истоках Иртыша и Кобдо. Путешествия 1906—1911 гг. Томск, 1911. 416 с.
- 7. Донченко Е.Д. Оледенение Шапшальского хребта и его динамика в историческое время (по результа-

References

- 1. *Tronov M.V. Ocherki oledeneniya Altaya*. Essays of the Altai glacierization. Moscow: Geografgiz, 1949: 373 p. [In Russian].
- 2. *Katalog lednikov SSSR*. USSR Glacier Inventory. V. 16. Is. 1. Pt. 4. Leningrad: Hydrometeoizdat, 1973: 63 p. [In Russian].
- 3. Skornyakov V.A. Runoff over the Upper Yenisei basin. *Izvestiya AN SSSR, Ser. Geographicheskaya*. Bulletin of the Russian Academy of Sciences: Geography. 1957, 6: 15–23. [In Russian].
- Skornyakov V.A. Distribution of average long-term runoff modules in the Upper Yenisei basin. *Meteorologiya i gidrologiya*. Meteorology and Hydrology. 1957, 8: 43–44. [In Russian].
- 5. Sevast'yanov V.V., Shantykova L.N. Characteristics of annual precipitation field in the Mountain Altai according to glaciological parameters. Vestnik TGU. Herald of the Tomsk State University. 2001, 274: 63–68. [In Russian].
- 6. *SapozhnikovV.V. Mongolskiy Altai v istokakh Irtysha i Khobdo*. Mongolian Altai in Irtysh and Khobdo headwaters. Tomsk, 1911: 416 p. [In Russian].

- там аэрофотосъемки) // Гляциология Алтая. 1962. № 2. С. 146—172.
- 8. *Михайлов Н.И*. Современное оледенение Шапшальского хребта (Восточный Алтай) // Изв. АН СССР. Сер. геогр. 1961. № 3. С. 67–68.
- 9. Cogley G. (submitter), Kienholz C., Miles E., Sharp M., Wyatt F. GLIMS Glacier Database. National Snow and Ice Data Center, 2015.
- 10. *Earl L., Gardner A.* A satellite-derived glacier inventory for North Asia // Annals of Glaciology 2016. T. 57. № 71. C. 50–60.
- 11. Shahgedanova M., Nosenko G., Khromova T., Muraveyev A. Glacier shrinkage and climatic change in the Russian Altai from the mid 20th century: An assessment using remote sensing and PRECIS regional climate model // Journ. of Geophys. Research. 2010. V. 115. C. 1–12.
- 12. *Носенко Г.А., Никитин С.А., Хромова Т.Е.* Изменение площади и объёма ледников Горного Алтая (Россия) с середины XX в. по данным космических съёмок // Лёд и Снег. 2014. № 2. С. 5–13.
- 13. Krumwiede B.S., Kamp U., Leonard G.J., Kargel J.S., Dashtseren A., Walther M. Recent Glacier Changes in the Mongolian Altai Mountains: Case Studies from Munkh Khairkhan and Tavan Bogd // Global Land Ice Measurements from Space / Ed. Kargel J., Leonard G., Bishop M., Kääb A., Raup B. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. S. 481–508.
- 14. Loibl D., Lehmkuhl F., Grieβinger J. Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation // Geomorphology. 2014. V. 214. P. 22–39.
- 15. Earth Resources Observation and Science (EROS) Center [Электронный ресурс]. URL: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects (дата обращения: 03.04.2018 г.).
- 16. Чистяков К.В., Селиверстов Ю.П., Москаленко И.Г., Новиков С.А., Севастьянов Д.В. Проблемы устойчивости внутриконтинентальных горных ландшафтов в изменяющемся мире. СПб.: СПб гос. ун-т, 1994. 94 с.
- 17. *Kurowsky L*. Die Hohe der Schneegrenze mit besonderer Berucksichtigung der Finsteraargorngruppe // Pencks Geogr. Abhandlungen. 1891. Bd. 5. S. 115–160.
- 18. Глазырин Г.Е. Распределение и режим горных ледников. Л.: Гидрометеоиздат, 1985. 181 с.
- Максимов Е.В. Основные закономерности современного оледенения в Киргизском Алатау // Соврем. вопросы гляциологии и палеогляциологии. № 17. Л.: Наука, 1964. С. 51–71.
- 20. Гляциологический словарь / Под ред. В.М. Котлякова Л.: Гидрометеоиздат, 1984. 528 с.
- 21. *Narozhniy Y., Zemtsov V.* Current State of the Altai Glaciers (Russia and trends over the period of instrumental observations 1952–2008) // Ambio. 2011. V. 40. № 6. P. 575–588.

- 7. *Donchenko E.D.* Glacierization of the Shapshalsky Range and its dynamics in historical time (based on aerial photography results). *Glyatsiologiya Altaya*. Glaciology of Altai. 1962, 2: 146–172. [In Russian].
- 8. *Mikhailov N.I.* Modern Glaciation of the Shapshalskiy Range (Eastern Altai). *Izvestiya AN SSSR. Ser. Geographicheskaya*. Bulletin of the Russian Academy of Sciences: Geography. 1961, 3: 67–78. [In Russian].
- 9. Cogley G. (submitter), Kienholz C., Miles E., Sharp M., Wyatt F. GLIMS Glacier Database. 2015.
- 10. *Earl L., Gardner A.* A satellite-derived glacier inventory for North Asia. Annals of Glaciology. 2016, 57 (71): 50–60.
- 11. Shahgedanova M., Nosenko G., Khromova T., Muraveyev A. Glacier shrinkage and climatic change in the Russian Altai from the mid 20th century: An assessment using remote sensing and PRECIS regional climate model. Journ. of Geophys. Research. 2010, 115: 1–12.
- 12. Nosenko G.A., Nikitin S.A., Khromova T.E. Glacier area and volume changes in the Mountain Altai (Russia) since the mid-twentieth century from space imagery data. Led i Sneg. Ice and Snow. 2014, 2: 5–13. [In Russian].
- 13. Krumwiede B.S., Kamp U., Leonard G.J., Kargel J.S., Dashtseren A., Walther M. Recent Glacier Changes in the Mongolian Altai Mountains: Case Studies from Munkh Khairkhan and Tavan Bogd. Global Land Ice Measurements from Space. Eds.: Kargel J., Leonard G., Bishop M., Kääb A., Raup B. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 481–508.
- 14. *Loibl D., Lehmkuhl F., Grieβinger J.* Reconstructing glacier retreat since the Little Ice Age in SE Tibet by glacier mapping and equilibrium line altitude calculation. Geomorphology. 2014, 214: 22–39.
- 15. Earth Resources Observation and Science (EROS) Center [online resource]. URL: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects (Retrieved 03.04.2018).
- 16. Chistyakov R.V., Seliverstov Yu.P., Moskalen-ko I.G., Sevast'yanov D.V. Problemy ustojchivosti vnutrikontinental'nykh gornykh landshaftov v izmenjajush-hemsja mire. Problems of stability of intra-continental mountain landscapes in a changing world. St. Petersburg: St. Petersburg State University, 1994: 94 p. [In Russian].
- 17. *Kurowsky L*. Die Hohe der Schneegrenze mit besonderer Berucksichtigung der Finsteraargorngruppe. Pencks Geogr. Abhandlungen. 1891, 5: 115–160.
- 18. *Glazyrin G.E. Raspredelenie i rezhim gornykh lednikov*. Distribution and regime of mountain glaciers. Leningrad: Hydrometeoizdat, 1985: 181 p. [In Russian].
- 19. *Maksimov E. V.* Main patterns of modern glaciation of the Kirgiz Alatau Range. *Sovremenny'e voprosy' glyaciologii i paleoglyaciologii*. Modern issues of glaciology and paleoglaciology. Leningrad: Nauka, 1964: 51–71. [In Russian].
- 20. *Glyatsiologicheskiy slovar*'. Glaciological Dictionary. Ed. V.M. Kotlyakov. L.: Gidrometeoizdat, 1984: 528 p. [In Russian].
- 21. *Narozhniy Y., Zemtsov V.* Current state of the Altai glaciers (Russia) and trends over the period of instrumental observations 1952–2008. Ambio. 2011, 40 (6): 575–588.

- 22. Ганюшкин Д.А., Чистяков К.В., Волков И.В., Банцев Д.В., Кунаева Е.П., Харламова Н.Ф. Новейшие данные об оледенении северного склона массива Таван-Богдо-Ола. // Лёд и Снег. 2017. Т. 57. № 3. С. 307—325.
- 23. Чистяков К.В., Ганюшкин Д.А., Москаленко И.Г., Зелепукина Е.С., Амосов М.И., Волков И.В., Глебова А.Б, Гузель Н.И.., Журавлев С.А., Прудников Т.Н., Пряхина Г.В. Горный массив Монгун-Тайга / Под ред. К.В. Чистякова. СПб.: Арт-Экспресс, 2012. 310 с.
- 24. *Kadota T., Gombo D.* Recent glacier variations in Mongolia // Annals of Glaciology. 2007. V. 46. P. 185–188.
- 25. Ганюшкин Д.А., Отгонбаяр Д., Чистяков К.В., Кунаева Е.П., Волков И.В. Современное оледенение хребта Цамбагарав (Северо-Западная Монголия) и его изменение с максимума малого ледникового периода // Лёд и Снег. 2016. Т. 56. № 4. С. 437—452.
- 26. Ganyushkin D. A., Chistyakov K. V., Volkov I.V., Bantcev D.V., Kunaeva E.P., Andreeva T.A., Terekhov A.V., Otgonbayar D. Present Glaciers of Tavan Bogd Massif in the Altai Mountains, Central Asia, and Their Changes since the Little Ice Age // Geosciences. Multidisciplinary Digital Publishing Institute. 2018. V. 8. № 11. P. 414.
- 27. *Ходаков В.Г.* Водно-ледниковый баланс районов современного и древнего оледенения СССР. М.: Наука, 1978. 194 с.

- 22. *Ganyushkin D.A.*, *Chistyakov K.V.*, *Volkov I.V.*, *Bantsev D.V.*, *Kunaeva E.P.*, *Kharlamova N.F.* Modern data on glaciation of the northern slope of Tavan-Bogdo-Ola massif (Altai). *Led i Sneg.* Ice and Snow. 2017, 57 (3): 307–325. [In Russian].
- 23. Chistyakov K.V., Ganyushkin, D. A., Moskalenko I. G., Zelepukina E.S., Amosov M.I., Volkov I.V, Glebova A.B, Guzjel' N.I., Zhuravlev S.A., Prudnikova T.N, Prjahina G.V.. Gornyj massiv Mongun-Tajga. Mongun-Taiga mountain massif. St.Petersburg: Art-Express, 2012: 310 p. [In Russian].
- 24. *Kadota T., Gombo D.* Recent glacier variations in Mongolia. Annals of Glaciology. 2007, 46: 185–188.
- 25. Ganyushkin D.A., Otgonbayar D., Chistyakov K.V., Kunaeva E.P., Volkov I.V. Recent glacierization of the Tsambagarav ridge (North-Western Mongolia) and its changes since the Little Ice Age maximum. Led i Sneg. Ice and Snow. 2016, 56 (4): 437–452. [In Russian].
- 26. Ganyushkin D.A., Chistyakov K.V., Volkov I.V., Bantcev D.V., Kunaeva E.P., Andreeva T.A., Terekhov A.V., Otgonbayar D. Present Glaciers of Tavan Bogd Massif in the Altai Mountains, Central Asia, and Their Changes since the Little Ice Age. Geosciences. 2018, 8 (11): 414.
- 27. *Khodakov V.G. Vodno-ledovyi balans rayonov sovremen-nogo i drevnego oledeneniya SSSR*. Ice and water balance in regions of the present-day and former glaciation of the USSR. Moscow: Nauka, 1978: 194 p. [In Russian].