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ВВЕДЕНИЕ
Известно, что на 20% всей площади Земли 

температура приземного слоя атмосферы имеет 
значение ниже температуры фазового перехода 
лёд–вода (Хромов, Петросянц, 2012). Очевидно, 
что при дистанционном зондировании земной 
поверхности необходимо исследовать диэлек-
трические характеристики криосферных образо-
ваний в широком частотном диапазоне. Эти зна-
ния позволяют получать информацию о средах, 
находящихся при отрицательной температуре. 
Так,  например, с  использованием зондирую-
щей аппаратуры, установленной на различных 
космических аппаратах, можно определять пло-
щадь арктических льдов, которая активно сокра-
щается (Матвеева и др., 2020), определять спло-
чённость льда (Алексеева и др., 2021), выявлять 
области загрязнения снежного покрова (Пасько 
и др., 2020), следить за состоянием горных лед-
ников (Хромова и др., 2021), выявлять особен-
ности пресных ледяных покровов (Хвостов и др., 
2017) и т.д. Для этих целей используют не только 
видимый и инфракрасный диапазоны, но и ми-
кроволновый.

Однако имеется ряд задач, связанных с диа-
гностикой криосферных сред, которые требуют 
оперативного принятия решений. Одна из таких 

задач – мониторинг автомобильных дорог, кото-
рые расположены на ледяных покровах. К сожа-
лению, существуют случаи с печальными послед-
ствиями при переправах из-за некачественного 
(или полного его отсутствия) мониторинга трас-
сы по ледяному покрову. Практически ежегодно 
под ледяной покров проваливаются транспорт-
ные средства (Шавлов, 1997). Поэтому необхо-
дим мониторинг подобных маршрутов. К  од-
ному из таких методов относится георадарный 
метод измерений (Топольский и др., 2012). Гео-
радары работают в частотном интервале от 20 до 
1500 МГц. Ввиду особенностей диэлектрических 
свойств льда и воды в данном диапазоне мож-
но выявлять внутренние особенности мёрзлых 
объектов, например толщину пресного ледяного 
покрова. Излучение в мегагерцовом диапазоне 
проникает в ледяной покров на несколько десят-
ков метров. Данная величина зависит от частоты, 
температуры и внутренних особенностей криос-
ферного объекта. Этот метод имеет ряд недостат-
ков, например, если в ледяном покрове имеются 
различные примеси, то уже невозможно с доста-
точно высокой точностью определить толщину 
ледяного и снежного покровов (Котляков и др., 
2017). Имеются работы, в  которых георадары 
устанавливаются на беспилотные летательные 
аппараты (Цепелев, 2023) с целью мониторинга 
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ледяных покровов. Однако при этом методе ис-
следования также имеются недостатки. Во-пер-
вых, стоит отметить малое полётное время дан-
ных БПЛА. Во-вторых, георадары, установлен-
ные на БПЛА, имеют небольшую высоту полёта 
(не более 1 м) над исследуемой территорией, что 
приводит к затруднению их применения в гори-
стой местности. По данным причинам исполь-
зование георадаров для изучения состояния кри-
осферных объектов в труднодоступных местах, 
например для изучения состояния горных лед-
ников, затруднительно.

Более широкий круг задач можно решать при 
зондировании криосферных образований с ис-
пользованием приборов на частотах выше, чем 
у георадаров, например в микроволновом диа-
пазоне. Это связано не только с уменьшением 
длины волны, но и с микроволновыми свойства-
ми среды, которые зависят от многих факторов. 
Например, у льда при увеличении длины волны 
мнимая часть относительной комплексной диэ-
лектрической проницаемости уменьшается, из-
за счёт чего скин-слой для пресного льда (с со-
лёностью 2 мг/кг) при его температуре  –5 °C 
на длине волны 1 мм составляет ~4 см, на дли-
не волны 1 см – ~2.5 м, на длине волны 5 см – 

~40 м. Наличие примесей во льду, даже в малых 
количествах, резко снижает это значение, что 
связывается с  увеличением значений мнимой 
части относительной комплексной диэлектри-
ческой проницаемости (Бордонский, Гурулев, 
2008). Также на диэлектрические характеристи-
ки льда оказывает влияние и температура среды 
(Глазовский, Мачерет, 2014). Используя эти дан-
ные, по радиотепловому излучению можно вы-
являть ряд внутренних особенностей исследуе-
мых криосферных образований.

Для измерения радиояркостной температуры 
используют микроволновые радиометры, кото-
рые принимают тепловое излучение на опреде-
лённой длине волны (Кутуза и др., 2016). Ради-
ометры устанавливают на различные носители: 
ИСЗ, водные суда, автомобили, самолёты. Од-
нако в  последнее время широкое распростра-
нение получили БПЛА, которые позволяют 
решать ряд практических задач, например для 
сельскохозяйственных нужд (Романец, Мудри-
ченко, 2024) или для работ с целью измерения 
характеристик прибрежной части морей как во 
время ледостава, так и в свободной ото льда при-
брежной зоне в видимом и инфракрасном диа-
пазонах (Кубряков и др., 2021; Жук и др., 2022). 
Микроволновый радиометр также устанавлива-
ют на борт БПЛА с целью выявления внутренних 

особенностей излучаемых объектов. Так, в рабо-
те (Сидоров и др., 2022) авторам удалось обнару-
жить возможные протечки земляных дамб по уве-
личению влажности почв верхнего слоя тела дам-
бы по изменению радиояркостной температуры 
(TЯ) таких участков, используя радиометрический 
приёмник, работающий на частоте 5.5 ГГц, уста-
новленный на беспилотный вертолет.

Рассмотрение особенностей использования 
микроволновой радиометрии криосферных об-
разований с борта БПЛА и является целью на-
стоящей работы. Данный вопрос исследован на 
недостаточно высоком научном уровне, практи-
чески отсутствуют научные работы по данной те-
матике. Актуальность нашей работы вытекает из 
практической необходимости оперативного мо-
ниторинга труднодоступных криосферных объ-
ектов, в частности для мониторинга ледовых пе-
реправ, исследований состояний пульсирующих 
ледников, обнаружения наледных образований, 
которые формируются под снежным покровом.

МИКРОВОЛНОВЫЕ 
ХАРАКТЕРИСТИКИ ЛЬДА

Проникающая способность электромагнит-
ного излучения в среду зависит от её мнимой 
(εʺ) и действительной (εʹ) частей относительной 
комплексной диэлектрической проницаемости. 
На рис. 1 приведены диэлектрические характе-
ристики пресной воды и льда без примесей в за-
висимости от длины волны излучения. Эти зна-
чения вычислены по формулам, приведённым 
в работах (Бордонский, 1995; Бордонский и др., 
2022). При расчёте диэлектрических параметров 
воды использовались новые данные о  её фи-
зико-химических свойствах, а  именно: учиты-
валось сосуществование в  ней двух кластеров 
воды – высокой (HDL) и низкой (LDL) плотно-
стей, которые взаимодействуют друг с другом на 
пикосекундных временах (Holten et al., 2013).

Как видно из приведённых графиков (см рис. 1), 
εʺ и εʹ отличаются для двух типов веществ, что при-
водит к существенным различиям значений мощ-
ности радиотеплового излучения в микроволно-
вом диапазоне при пассивной радиолокации для 
льда и воды; соответственно, и для активной ради-
олокации (проникающая способность электромаг-
нитного излучения выше, когда εʺ ниже).

Отмечена зависимость мнимой и  действи-
тельной частей относительной комплексной ди
электрической проницаемости для льда от темпе-
ратуры и солёности. С понижением температуры 
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значение εʺ понижается, а с повышением кон-
центрации солей  – повышается. Для  льда без 
примесей на длине волны 0.88 см значение мни-
мой части относительной комплексной диэлек-
трической проницаемости 0.0029 при температу-
ре –1 °C, причём с понижением температуры её 
величина практически не изменяется. При уве-
личении концентрации солей во льду до 50 мг/кг 

при температуре –1 °C значение мнимой части 
относительной комплексной диэлектрической 
проницаемости для длины волны 0.88 см увели-
чивается на 10%, а при температуре –15 °C – все-
го на 4%. Отмечено, что данные изменения зна-
чений εʺ существенно влияют на излучательные 
и отражательные свойства криосферных объек-
тов, содержащих солевые включения. Расчёты 
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Рис. 1. Зависимости действительной и мнимой частей комплексной относительной диэлектрической проницаемо-
сти от длины волны для воды при температуре +1 °C (а), для пресного льда при температуре –1 °C (б): 1 – мнимая 
часть комплексной относительной диэлектрической проницаемости, 2 – действительная часть комплексной отно-
сительной диэлектрической проницаемости
Fig. 1. Dependences of the real and imaginary parts of the complex relative permittivity on the wavelength for water at a 
temperature of +1 °C (а), for fresh ice at a temperature of –1 °C (б): 1 – imaginary part of the complex relative permittivity, 
2 – real part of the complex relative permittivity
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выполнены по формуле, приведённой в работе 
(Бордонский, Гурулев, 2008).

Также следует учитывать и  концентрацию 
различных примесей во льду, которые захваты-
ваются в момент его становления, в виде мине-
ральных частиц, пузырей и растительности, ко-
торые тоже влияют на значение εʹ и εʺ (Бордон-
ский и др., 1994).

Пристальное внимание при радиолокацион-
ных исследованиях криосферных объектов сле-
дует обращать на обнаруженные особые темпе-
ратурные точки для холодной воды, описанные 
в работе (Гурулев, Бордонский, 2024). Вышеука-
занные температуры имеют значения: 0 °C (тем-
пература фазового перехода лед–вода), –23 °C 
(температура образования льда 0 из переохлаж-
дённой воды), –41 °C (температура гомогенной 
нуклеации), –45 °C (температура на линии Ви-
дома при нормальном атмосферном давлении, 
в области которой возможно некоторое возрас-
тание электромагнитного затухания). Жидкая 
объёмная вода при данных температурах может 
наблюдаться в  поровом пространстве (расти-
тельность, грунты и т.п.).

В связи с вышесказанным при выполнении 
активных или пассивных радиолокационных 
измерений криосферных структур необходимо 
учитывать физико-химические характеристики 
среды для правильной интерпретации получае-
мой информации с радиолокационной аппара-
туры.

ИЗЛУЧАТЕЛЬНЫЕ СВОЙСТВА 
КРИОСФЕРНЫХ ОБРАЗОВАНИЙ

Пассивные методы радиолокации позволяют 
определять мощность собственного теплового 
излучения, подчиняющегося закону излучения 
Планка (в микроволновом диапазоне закон Рэ-
лея–Джинса). Данное излучение, как было ска-
зано выше, зависит от диэлектрических харак-
теристик среды (для немагнитных сред) и тер-
модинамической температуры. Мерой данного 
излучения служит радиояркостная температура, 
которая определяется для полубесконечных пло-
скослоистых сред по формуле TЯ = T0(1 – |–R|2), 
где TЯ – радиояркостная температура, T0 – тер-
модинамическая температура, R – коэффици-
ент Френеля, зависящий от диэлектрических 
свойств излучающей среды и угла наблюдения.

Выполнены измерения и  расчёты ради-
ояркостной температуры для длины волны 
0.88 см в свободном пространстве. Расчёты TЯ 

выполнялись для плоскослоистой, неизотерми-
ческой среды, представляющей из себя ледяной 
покров, лежащий на водной поверхности прес-
ного водоёма. Теория расчёта приведена в  ра-
ботах (Клепиков, Шарков, 1992; Репина и др., 
2012). Наличие снежного покрова при расчё-
тах не учитывалось. Обоснование длины волны 
0.88 см связано с тем, что для более длинновол-
новой части (сантиметрового или дециметро-
вого диапазонов) растущий ледяной покров не 
показывает больших вариаций радиояркостной 
температуры, связанной с интерференционны-
ми явлениями, происходящими в плоских сло-
истых структурах.

Мы использовали изготовленный в Институ-
те природных ресурсов, экологии и криологии 
СО РАН радиометрический приёмник на частоту 
34 ГГц, с шириной полосы 2.3 ГГц. Флуктуаци-
онная чувствительность радиометра составляла 
0.05 К при постоянном времени 1 с. Для умень-
шения влияния уровня боковых лепестков ан-
тенны мы использовали узконаправленную 
скалярную гофрированную рупорную антенну 
с  диаметром апертуры 45 мм, диаграммой на-
правленности 10°. Эта рупорная антенна имеет 
небольшие геометрические размеры, а соответ-
ственно, и  массу, что является существенным 
фактором для установки микроволнового ради-
ометра на квадрокоптер. Измерения выполняли 
на вертикальной поляризации.

При использовании радиометрического при-
ёмника на борту БПЛА необходимо учитывать 
вариации угла наблюдения. Это связано с тем, 
что TЯ подстилающей поверхности существенно 
зависит от него. Так, на рис. 2, а приведена за-
висимость радиояркостной температуры от угла 
наблюдения при минерализации льда 1 мг/кг 
и толщинах 30, 60 и 120 см. На рис. 2, б показаны 
разность между вертикальной и горизонтальной 
поляризациями. Как видно из приведённых гра-
фиков, минимальная разность TЯ наблюдается 
для углов, близких к надирному. Для углов, близ-
ких к 20 градусам, разность достигает значений 
около 5 К. По этой причине при исследовании 
теплового излучения ледяного покрова и других 
криосферных объектов необходимо производить 
зондирование на углах, близких к надиру, но не 
в надир. Это позволит минимизировать ошибки, 
связанные с изменением угла крена беспилотно-
го летательного аппарата.

При радиометрических измерениях также 
следует учитывать интерференцию волн, которая 
возникает в результате переотражений излуче-
ния на границах вода–лёд и воздух–лёд. Так, на 
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Рис. 2. Зависимости радиояркостной температуры ледяного покрова на длине волны 0.88 см от значения угла на-
блюдения (φ) для горизонтальной (сплошная линия) и вертикальной (пунктирная линия) поляризаций (а), раз-
ность радиояркостной температуры между вертикальной и горизонтальной поляризациями в зависимости от зна-
чения угла наблюдения (б). Минерализация льда – 1 мг/кг. 1 – толщина ледяного покрова (h) 30 см, 2 – h = 60 см, 
3 – h = 120 см
Fig. 2. Dependence of the brightness temperature of the ice cover at a wavelength of 0.88 cm on the value of the observation 
angle (φ) for horizontal (solid line) and vertical (dashed line) polarizations (а), the difference in brightness temperature be-
tween vertical and horizontal polarizations depending on the value of the observation angle (б). Ice mineralization – 1 mg/ kg. 
1 – ice cover thickness (h) 30 cm, 2 – h = 60 cm, 3 – h = 120 cm
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рис. 3 приведены расчётные значения радиояр-
костной температуры ледяного покрова в зави-
симости от его толщины. Расчёты выполнены 
на горизонтальной и вертикальной поляризаци-
ях для углов наблюдения 10 и 20°. При расчётах 
солёность льда была принята 30 мг/кг. Относи-
тельно большая величина количества солей обо-
сновывается тем, что, как показывают натурные 
измерения, при быстром становлении ледяного 
покрова в пресном водоёме концентрация солей 
во льду может достигать 30% от исходной мине-
рализации воды. Затем при длительном суще-
ствовании пресного ледяного покрова его ми-
нерализация понижается и достигает значений 
около 1 мг/кг. Эффект опреснения ледяного по-
крова также описан и для морского льда (Нагур-
ный и др., 2005).

Как видно из приведённых графиков, на-
блюдаются вариации радиояркостной темпе-
ратуры, связанные с  интерференцией излуче-
ния. По  мере роста льда интерференция зату-
хает и практически прекращается при толщине 
ледяного покрова 10 см. Однако следует учесть, 
что при меньших концентрациях солей данная 
интерференция прекратится при бóльших тол-
щинах ледяного покрова, как показано в  ра-
боте (Гурулев и др., 2011), где рассматриваются 
вопросы вариаций мощности радиотеплового 
излучения для пресных ледяных покровов. Су-
щественная разница TЯ для значений углов на-
блюдений 10 и  20° достигается при толщинах 
около 5 см и имеет значение ~30 К. Учтено, что 
по мере увеличения диаграммы направленности 
антенны, а также увеличения ширины полосы 
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Рис. 3. Зависимости радиояркостной температуры растущего ледяного покрова на длине волны 0.88 см при раз-
личных углах наблюдения для горизонтальной поляризации (а), для вертикальной поляризации (б), разность ра-
диояркостной температуры (ТЯ(10°)–ТЯ(20°)) для горизонтальной поляризации (в), разность радиояркостной тем-
пературы (ТЯ(10°)–ТЯ(20°)) для вертикальной поляризации (г). 1 – угол наблюдения 10°, 2 – угол наблюдения 20°
Fig. 3. Dependences of the brightness temperature of the growing ice cover at a wavelength of 0.88 cm at different observation 
angles for horizontal polarization (а), for vertical polarization (б), the difference in the brightness temperature (ТЯ(10°)–
ТЯ(20°)) for horizontal polarization (в), the difference in the brightness temperature (ТЯ(10°)–ТЯ(20°)) for vertical polariza-
tion (г). 1 – observation angle 10°, 2 – observation angle 20°
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пропускания радиометрической аппаратуры ва-
риации TЯ уменьшаются.

Для определения влияния угла зондирова-
ния на мощность теплового излучения выпол-
нены натурные измерения, связанные с опре-
делением излучательных характеристик отно-
сительно тонкого слоя пресного льда (до 10 см) 
в миллиметровом диапазоне. Для этих целей 
в пресном ледяном покрове озера была изго-
товлена ниша с  размерами 110×120 см и  глу-
биной 40 см, которая заполнялась водой с ми-
нерализацией ~100  мг/л. Под  действием от-
рицательных температур воздуха на водной 
поверхности происходил рост льда. На высоте 
210 см от водной поверхности был размещён 
микроволновый радиометр. Угол наблюдения 
составлял 20°. Периодически угол изменяли до 
15°. Измерения выполнялись на горизонталь-
ной поляризации. Фотография измерительной 
установки показана на рис. 4.

В результате трёх суток измерений были 
получены данные, представленные на рис. 5. 
Как видно из приведённого графика, наблюда-
ются осцилляции радиояркостной температу-
ры, характеризующей мощность радиотеплово-
го излучения среды. Эти осцилляции являются 
результатом интерференции электромагнитного 
излучения от верхней и нижней границ ледяно-
го покрова. Это связано с увеличением толщины 
слоя ледяного покрова, что подтверждает рас-
чётное значение радиояркостной температуры. 
В  конце эксперимента толщина свежеобразо-
ванного льда составила 85 мм. Цифрой 1 отме-
чено время, когда на растущий ледяной покров 
естественным путём выпал влажный снег толщи-
ной до 5 см. Фотография со снегом показана на 
рисунке выше (см. рис. 4, б). Высокая концен-
трация воды в снеге связана с тем, что темпера-
тура окружающей среды была выше 0 °C. Затем 
снег был с поверхности льда удалён. Красными 

a б

Рис. 4. Фотографии измерения радиояркостной температуры растущего пресного ледяного покрова на частоте 34 
ГГц. Ледяной покров без снега (а), ледяной покров со свежевыпавшим снегом (б). Фото А.А. Гурулева, март 2024 г.
Fig. 4. Photographs of brightness temperature measurements of growing freshwater ice cover at a frequency of 34 GHz. 
Ice cover without snow (а), ice cover with freshly fallen snow (б). Photo by A.A. Gurulev, March 2024
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точками на графике выделены участки времени, 
когда происходили измерения при угле наблюде-
ния 15°. Как видно по этим точкам, значение ра-
диояркостной температуры существенно отлича-
ется от значений, полученных при наблюдении 
под углом в 20°.

Лёд представляет собой динамический объект, 
физические свойства которого могут меняться 
с течением времени, что связывается с измене-
нием внешних факторов воздействия на данную 
среду. К ним можно отнести ветровые нагрузки, 
температурные изменения, внешнее давление, 
освещённость и т.п. Ниже рассмотрены некото-
рые из них.

При исследовании пластической деформации 
металлов были обнаружены волны течения, ско-
рость которых составляет всего 0.01 мм/c и име-
ет характерную длину волны около 1 см (Зуев 
и  др., 2008). Такие волны также могут суще-
ствовать и в пресных ледяных покровах за счёт 

термических напряжений. Они  перемещаются 
в среде с малой скоростью. Следовательно, иссле-
дуемый объект будет представлять собой ледяной 
покров с внедрённой в него дифракционной ре-
шёткой с периодом, приблизительно равным од-
ному сантиметру, что было обнаружено в работе 
(Гурулев и др., 2023). Данные вóлны могут влиять 
на мощность теплового излучения, что также не-
обходимо учитывать при радиометрических ис-
следованиях криосферных образований.

Перед началом таяния льда обнаружено рез-
кое уменьшение εʺ как в видимом, так и в ми-
кроволновом диапазоне (Бордонский и  др., 
2023). Данный факт может приводить к умень-
шению мощности радиотеплового излучения, 
а соответственно, и к неправильной интерпре-
тации получаемых данных. Например, в  рабо-
те (Казанцев, Бордонский, 2025) представлены 
расчётные значения радиояркостной температу-
ры ледяного покрова при моделировании этого 
эффекта, и было показано, что понижение TЯ 
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Рис. 5. Радиояркостная температура растущего пресного ледяного покрова на частоте 34 ГГц. Угол наблюдения 20°. 
Красными точками отмечено значение ТЯ на угле наблюдения 15°. Дата: 12–14 марта 2024 г. 1 – свежевыпавший 
снег на поверхности ледяного покрова
Fig. 5. Brightness temperature of growing fresh ice cover at 34 GHz. Observation angle 20°. Red dots indicate the ТЯ value at 
an observation angle of 15°. Date: March 12–14, 2024. 1 – freshly fallen snow on the surface of the ice cover



	 ОСОБЕННОСТИ МИКРОВОЛНОВЫХ ИЗМЕРЕНИЙ КРИОСФЕРНЫХ ОБРАЗОВАНИЙ� 455

ЛЁД И СНЕГ том 65 № 3  

может достигать значений ~30 К. С другой сто-
роны, во время деструкции льда в нём наблюда-
ется повышение концентрации влаги, вследствие 
чего диэлектрическая проницаемость льда воз-
растает, что приводит к повышению TЯ. Следо-
вательно, высокое значение TЯ может быть ин-
терпретировано как значение TЯ относительно 
толстого и прочного льда, как и значение TЯ тон-
кого увлажнённого льда. Приведённые результа-
ты исследования по пассивным методам дистан-
ционного зондирования криосферных образо-
ваний в микроволновом диапазоне применимы 
и для активных радиолокационных измерений 
на больших длинах волн.

РАДИОМЕТРИЧЕСКИЕ ИЗМЕРЕНИЯ 
С ИСПОЛЬЗОВАНИЕМ БПЛА

Выполнены лётные испытания изготовлен-
ного радиометрического приёмника, установ-
ленного на БПЛА (с грузоподъёмностью до 4 кг). 
По результатам испытаний получена трассовая 
запись радиояркостной температуры небольшо-
го тестового участка вблизи автодороги, покры-
того снежным покровом, фотография которо-
го приведена на рис. 6, а. Температура воздуха 
во время лётных испытаний составляла –21 °C, 
а  температура грунта под снежным покровом 
составляла –16 °C.

На рис. 6, б представлены значения радиояр-
костной температуры исследуемой трассы. Об-
наруживается дорожное бетонное покрытие, на 
котором расположен сухой снежный покров тол-
щиной до 25 см. На данном участке значение ра-
диояркостной температуры выше на ~20 К, что 
связано с различными излучательными характе-
ристиками грунта и бетонного покрытия. Ши-
рина бетонного дорожного покрытия составляет 

~3 м. Цифрой 4 (см. рис. 6, б) отмечено начало 
данного покрытия. Отмечен пологий переход от 
грунта к бетону, что связывается с его особенно-
стью (неравномерный слой бетона по толщине), 
а также с трансформацией слоя грунта с осадка-
ми при его замерзании. В результате показано, 
что радиометрические исследования на длине 
волны 0.88 см с использованием БПЛА имеют 
практическое значение.

Также выполнены измерения радиотеплового 
излучения участка грунта с неровным рельефом. 
Исследуемый участок местности представлял 
собой холм насыпного грунта диаметром около 
10 м и высотой до 5 м, также рядом находилось 
углубление до двух метров от горизонта. Обнару-
жено, что значение радиояркостной температу-
ры увеличивается на 5–6 К при изменении угла 
рельефа относительно горизонта. Данный эф-
фект связывается с увеличением угла наблюде-
ния радиометрического приёмника.
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Рис. 6. Фотография летных испытаний радиометра (а), трассовая запись радиояркостной температуры во время 
летных испытаний радиометра на длине волны 0.88 см (б). Дата: 06.12.2024. Фото А.А. Гурулева, декабрь 2024 г. 
1 – радиометр на длину волны 0.88 см, установленный на БПЛА, 2 – лист металла, 3 – эталон черного тела, 4 – 
дорожное бетонное покрытие
Fig. 6. Photograph of flight tests of the radiometer (а), track record of the brightness temperature during flight tests of the 
radiometer at a wavelength of 0.88 cm (б). Date: December 06, 2024. Photo by A.A. Gurulev, December 2024). 1 – radiom-
eter for a wavelength of 0.88 cm, installed on the UAV, 2 – sheet of metal, 3 – black body standard, 4 – concrete road surface
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При расположении БПЛА с радиометром над 
определённым участком горизонтальной засне-
женной поверхности грунта наблюдались вари-
ации значений радиояркостной температуры. 
Они  были связаны с  системой стабилизации 
квадрокоптера в пространстве, которая регули-
рует мощность двигателей, изменяя углы танга-
жа и крена БПЛА.

Таким образом, натурные измерения соб-
ственного теплового излучения мёрзлого грун-
та показали эффективность применения БПЛА 
с установленным на его борту радиометрическим 
приёмником на длину волны 0.88 см. При этом 
следует учитывать углы наклона местности 
и  расположение радиометра в  пространстве, 
вводя поправочные коэффициенты, для интер-
претации полученных радиометрических данных 
с  использованием зарегистрированных углов 
(квадрокоптера и карты рельефа).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 
ИССЛЕДОВАНИЯ

Исходя из графиков (см. рис. 2–3, 5), необ-
ходимо производить фиксирование угловых ха-
рактеристик радиометрического приёмника. 
Это связано с тем, что ошибка при измерениях 
подобных плоскослоистых сред может достигать 
30 К, а это существенный показатель. Экспери-
ментальные данные (см. рис. 6, б) показывают, 
что действительно имеются некоторые вариации 
TЯ, которые могут быть связаны как с неболь-
шим изменением угловых характеристик БПЛА, 
так и с особенностями подстилающей поверх-
ности, а также с наклонными характеристика-
ми зондируемой поверхности. В случае, когда 
производятся измерения TЯ подстилающей по-
верхности, которая расположена под некоторым 
углом к  радиометрическому приёмнику, необ-
ходимо проводить коррекцию полученных дан-
ных, принимая во внимание изменения угловых 
характеристик.

ВЫВОДЫ
Таким образом, выполненное исследование 

по радиометрическим измерениям в миллиме-
тровом диапазоне криосферных образований 
с использованием БПЛА показало следующие 
особенности.

Во-первых, при радиометрических измерени-
ях необходимо учитывать угол наблюдения и по-
стоянно вести его регистрацию; во-вторых, во 
время измерений радиояркостной температуры 

криосферных объектов, расположенных на на-
клонных поверхностях, следует составлять карту 
рельефа, на которой будут указаны углы площа-
док поверхности относительно горизонта, для 
интерпретации получаемых сигналов с  радио
метра; в-третьих, измерения мощности радио-
теплового излучения криосферных образований 
в микроволновом диапазоне с использованием 
радиометров, установленных на борт БПЛА, яв-
ляются уникальным средством для диагности-
ки их состояний, особенно в труднодоступных 
местах; и, наконец, в-четвёртых, следует учи-
тывать вариации значений TЯ при измерениях 
плоскослоистых сред с  малыми диэлектриче-
скими потерями, которые связаны с  интерфе-
ренцией электромагнитного излучения слоистых 
сред с малым промежуточным слоем, например 
пресного ледяного покрова, расположенного на 
водной поверхности.
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The paper presents the results of remote studies of cryospheric formations in the microwave range 
using unmanned aerial vehicles (UAVs). For these purposes, a radiometric receiver with a frequency of 
34 GHz with a bandwidth of 2.3 GHz with a fluctuation sensitivity of 0.05 K at a time constant of 1 s 
was installed on board the UAV. The directional pattern of the corrugated antenna was about 10°. It is 
shown that this method of monitoring in the millimeter range of media containing ice inclusions is an 
urgent task, especially in hard-to-reach places. There are a number of difficulties in interpreting the 
obtained brightness temperature of the radiating medium, which characterizes the power of thermal 
radiation. The first difficulty lies in the fact that the obtained value of this temperature depends on 
the angle of observation, therefore, at the time of radiometric studies of cryospheric formations, it is 
necessary to measure the position of the UAV in space (pitch and roll angles). In addition, it is necessary 
to take into account the terrain, namely the angles of its inclination relative to the horizon. The second 
difficulty in interpreting the data obtained from microwave measurements of thermal radiation power 
is the peculiarity of the medium under study. For example, for a plane-layered three-layer medium 
with a relatively thin intermediate layer, interference of the brightness temperature is observed, both 
on vertical and horizontal polarization. Inclusions in cryospheric formations with sharply different 
dielectric characteristics from the medium itself, for example, gas bubbles in ice, should also be taken 
into account. The work will be of interest to researchers involved in monitoring various cryospheric 
environments, both for practical (ice crossings) and scientific (glaciers) purposes.

Keywords: microwave range, freshwater ice cover, cryospheric formations, UAV, brightness temperature
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